# S3.00June 1982

Evaluating Application Development Software Introduction To Microcommunications

MicroSpell, MicroProof, And SpellGuard

8080 Assembler Tutorial: Subroutines

A Review of FMS-80

CPMUG Volume 81

Using PLAN80

1

## The Non-Programming Approach to Data Base Management

TM

#### Data Base Management

Data management packages were created to save time and money in the development of software solutions to information problems. Many have been designed to accomplish just that, although most have only the programmer in mind. Sure they would save time in the long run, but what of the initial investment in time and effort required to learn the new language? What about the non-programmers in the world who would like an easy yet powerful applications generator? The solution is one of the most highly acclaimed software packages of our time, T.I.M. III.

#### What is T.I.M.?

T.I.M. is **Total Information Management**. Programmers love it due to its original solutions to classic data management problems. Nonprogrammers adore it since they can use it to achieve the same results as with other more complicated programming-like packages.

## What Makes T.I.M. So Simple to Use?

We at Innovative Software, Inc. designed T.I.M. from day one with the end user in mind. Maybe he is a programmer who doesn't have time to learn a new language. Or perhaps a neophyte who fears coding pads and lines numbered by tens. We felt that a data management package should be able to be used by anyone from a systems analyst to a secretary. That's why T.I.M. takes a full *menu-driven* approach, uses multiple *HELP* screens, and has a manual that sets a new standard in documentation.

#### The Manual

Many people believe that the manual is just as important as the software itself, a view that we at Innovative Software, Inc. tend to share. The manual for T.I.M. is divided into two sections, the Reference section and the Primer. The Reference section describes all of T.I.M.'s commands and subcommands. This is done in English, not in technical terms or in our own language. Even if you have

Available for CP/M,\* and IBM PC DOS.\*\* CP/M version—\*695. IBM PC version—\*495. never seen a computer before in your life, you'll be able to read and understand our manual immediately. The second section is a primer which goes through several examples for you, again in plain English. These true-to-life examples take the beginner by the hand, and instructs him what to do and when. You will be able to see for yourself that T.I.M.'s only limitation is the imagination of the user.

#### Features of T.I.M.

T.I.M. has all of the features one has come to expect from a data management package, as well as many new ones. For example, a *word processing* interface that allows you to merge information from a T.I.M. file with letters or other documents created by a word processor. Now you can automatically send personalized letters to hundreds or thousands—quickly and easily. T.I.M.'s *Select* command enables you to pull specific information from a file. For example. "All customers who live in a certain ZIP code, whose last name begins with the letter A to L, whose balance due is less than \$50.00." A sophisticated *report generator* and even a *list generator* are also included.

How powerful is T.I.M.? With a maximum record size of 2400 characters and the ability to keep up to forty fields sorted properly at all times, T.I.M. is powerful enough to handle just about any application. T.I.M. can handle over 32,000 records per file, and two files can be linked together for reports if your application requires a many-to-one relationship. T.I.M. also includes all of the same editing commands as your word processor, thus making data entry and editing a snap. You can also pull selected records from one file to place them into another. Files may be restructured to add or subtract fields and/or change field lengths or types.T.I.M. even has it's own utility for backing up hard disks onto floppies.

#### Where to Find T.I.M.

T.I.M. is available from Lifeboat Associates. Or you may purchase from us direct by calling 913/383-1089. Either way you will have the finest data management program available.

> Innovative Software, Inc. 9300 W. 110th Street, Suite 380 Overland Park, Kansas 66210 USA 913/383-1089

## THAN HIGT ANOTHED DETTY

"NEVI

FORGETS."

н

#### Says who? Says ANSI.

Specifically, subcommittee X3B8 of the American National Standards Institute (ANSI) says so. The fact is all Elephant<sup>™</sup> floppies meet or exceed the specs required to meet or exceed all their standards.

But just who is "subcommittee X3B8" to issue such pronouncements?

They're a group of people representing a large, well-balanced cross section of disciplines—from academia, government agencies, and the computer industry. People from places like IBM, Hewlett-Packard, 3M, Lawrence Livermore Labs, The U.S. Department of Defense, Honeywell and The Association of Computer Programmers and Analysts. In short, it's a bunch of high-caliber nitpickers whose mission, it seems, in order to make better disks for consumers, is also to make life miserable for everyone in the disk-making business.

How? By gathering together periodically (often, one suspects, under the full moon) to concoct more and more rules to increase the quality of flexible disks. Their most recent rule book runs over 20 singlespaced pages—listing, and insisting upon—hundreds upon hundreds of standards a disk must meet in order to be blessed by ANSI. (And thereby be taken seriously by people who take disks seriously.)

In fact, if you'd like a copy of this formidable document, for free, just let us know and we'll send you one. Because once you know what it takes to make an Elephant for ANSI...

We think you'll want us to make some Elephants for you.

## ELEPHANT." HEAVY DUTY DISKS.

Distributed Exclusively by Leading Edge Products, Inc., 225 Turnpike Street, Canton, Massachusetts 02021 Call: toll-free 1-800-343-6833; or in Massachusetts call collect (617) 828-8150. Telex 951-624.

# LIFELINES The Software Magazine

June 1982

Volume III, No. 1

Editor-in-Chief: Edward H. Currie Editor: Jane Mellin Circulation/Customer Service: Patricia Matthews Director of Communications: Bonita E. Taylor

**Design/Production:** K. Gartner **Typographer:** Harold Black **Cover** by K. Gartner **Cover photography** by Bruce Weiss

#### DEPARTMENTS

#### Opinion

- 6 Editorial Comments All things come to those who wait Edward H. Currie
- 7 The Pipeline Pick Your Modem, Folks Carl Warren

#### The CP/M® Users Group

27 Volume 81 Catalogue and Abstracts

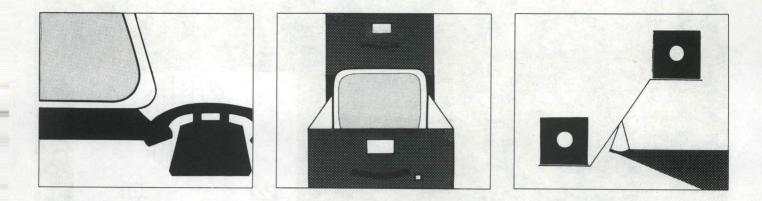
#### **Software Notes**

- 21 Tips & Techniques
- 26 For COBOL-80<sup>™</sup> Users
- 28 Macros of The Month
  - Edited by Michael Olfe
- 37 Patches For MAGSAM<sup>™</sup>
- 40 Pseudo-Relocatable Subroutines, Part 2 Gregory A. Knott

- 42 For BSTAM<sup>™</sup>/BSTMS<sup>™</sup> Users
- 50 Modifying Control-C In MBASIC<sup>™</sup>

Bill Norris 53 Notes On dBASE II<sup>™</sup>, Version 2.38 Michael Olfe

#### **Product Status Reports**


- 51 New Products
- 52 New Versions
- 53 Bugs
- 54 Version List

#### Miscellaneous

- 10 Notice
- 19 KIBITS™
- 20 Renew
- 34 A Call For Manuscripts
- 42 Attention Dealers

Copyright © 1982, by Lifelines Publishing Corporation. No portion of this publication may be reproduced without the written permission of the publisher. The single issue price is \$3.00 cropies sent to destinations in the U.S., Canada, or Mexico. The single issue price for copies sent to all other countries is \$4.30. All checks should be made payable to Lifelines Publishing Corporation. Foreign checks must be in U.S. dollars, drawn on a U.S. bank; checks, money orders, VISA, and MasterCard are acceptable. All orders must be pre-paid. Please send all correspondence to the Publisher at the below address.

Lifelines (ISSN 0279-2575, USPS 597-830) is published monthly at a subscription price of \$24 for twelve issues, when destined for the U.S., Canada, or Mexico, \$50 when destined for any other country. Second-class postage paid at New York, New York. POSTMASTER, please send changes of address to Lifelines Publishing Corporation, 1651 Third Ave., New York, N.Y. 10028. Lifelines -TM Lifelines Publishing Corp. The Software Magazine -TM Lifelines Publishing Corp. SB-80, SB-86 - TMs Lifeboat Associates. The Apple - TM Apple Computer, Inc. BASIC-80, MBASIC, MS, SoftCard, COBOL-80 - TMs Microsoft, Inc. BSTAM, BSTMS - TMs Byrom Software. CB80, CBASIC2, PL/I-80, SID-86 CP/M-86 - TMs, CP/M registered TM - Digital Research, Inc. The CP/M Users Group is not affiliated with Digital Research, Inc. dBASE II - TM Ashton-Tate. FMS-80 - TM Systems Plus. KIBITS - TM Bess Garber and Seton Kasmir. MAGSAM - TM Micro Applications Group. MicroProof - TM Cornucopia Software. MicroProof - TM Conucopia Software. MicroSpell - TM Bob Lucas. PLAN80 - TM Busines Planning Systems, Inc. PMATE, PLINK-II - TMs Phoenix Software Associates, Ltd. SMARTERM - TM Advanced Logic Systems, Inc. PMATE, PLINK-II - TMs WicroPro International Corp. Z80 - TM Zilog Corporation. Program names are generally TMs of their authors or owners.



#### FEATURES

#### 12 A Review of FMS-80<sup>™</sup>

#### Mark Rettig

This powerful, menu-driven file management system is evaluated as part of our data base management series.

## 17 AUTOLOAD For SB-80<sup>™</sup>, CP/M-86<sup>™</sup> And CP/M-80 On The Osborne I Computer

#### Kelly Smith

Did you know that the AUTOLOAD feature of CP/M-80 also exists in SB-80 and CP/M-86? And a special assembly language programming trick will help you implement it on the Osborne I computer.

#### 20 SMARTERM<sup>™</sup> Inverse Video In CP/M-80 For The Apple<sup>™</sup>

#### Lou P. Rivas

This article will let you bypass some problems in achieving inverse video with the SMARTERM card, the Z80<sup>™</sup> SoftCard<sup>™</sup> and your Apple.

#### 23 Criteria For Evaluating Application Development Software Steve Patchen

"Fourth generation" software is emerging in a wide variety of styles and capabilities. This author has established some standards by which to assess these new products.

#### 30 8080 Assembler Tutorial: Subroutines

#### Ward Christensen

Subroutines for data movement, arithmetic, logical and input/output are covered; more subroutines will be examined later on.

#### 35 MicroSpell<sup>™</sup>, MicroProof<sup>™</sup>, and SpellGuard<sup>™</sup>

#### James K. Mills

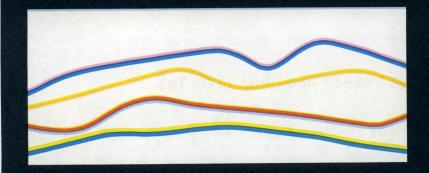
The best of current spelling checkers are compared (including SpellStar<sup>™</sup>, which was fully described in last month's issue). This article will help you decide which product best suits your needs.

#### 38 A Detailed Description of PLAN80<sup>™</sup>, Part 2

#### Raymond J. Sonoff

PLAN80 can eliminate the drudgery which used to be part of financial modeling. Other financial planning packages will be discussed in future issues.

#### 44 An Introduction To Microcommunications


#### Davis Foulger

The possibilities for microcommunications are rapidly expanding – in terms of methods, software, and the wealth of information available to the microcomputer user.

Use your desk-top computer to produce sophisticated graphs and charts with a small number of simple, straightforward commands in plain English.

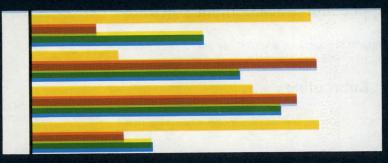
With this easy-to-use graphics software system, even a first-time user can portray data in visual form — pie charts, line graphs, bar graphs, symbol plots, mixed charts, you name it. You can display productivity reports, profit trends, budgets, absenteeism, tax outlays, office expenses, and sales projections. Useful for all types of business and scientific applications.

Optional full-color support is available for use with color terminals, color printers and plotters.



This fully interactive graphics package sacrifices nothing in the way of power and versatility to help communicate even your most complicated presentations.

For more information about GrafTalk and 200 other programs suitable for use in professional, programming, and personal environments, contact:


Lifeboat Associates, 1651 Third Ave. NY, NY 10028; (212)

710-581-2524 (LBSOFT NYK) or Telex: 640693 (LBSOFT NYK). Dealer/Distributor/OEM in-

860-0300; or TWX:

quiries invited.

# **GrafTalk Speaks Your Mind**



Graffalk requires a computer using a CP/M\*80 compatible operating system as well as a video terminal and one of the wide variety of printers\* plotters\*\* or graphics CRTs The following is a partial list of supported iprinters and plotters

#### \*Printers

Diablo 1640, 1650, 630+ NEC Spinwriter+ The following must be used in conjunct a graphics terminal such as Autograph Epson with Graffrax+

Liteboat Associates 1651 Third Avenue New York, New York 10028 Telephone: (212) 860-0300 TWX: 710-581-2524 (LBSOFT NYK) Telex: 640693 (LBSOFT NYK) Plotters

HP 7220/1/5 Houston DMP3/4/6/7 Tektronix 4662 Watanabe WX4630/75

Copyright © 1982 by Lifeboat Associates. Graffalk:TM Redding Group. Inc CP/M. reg TM Digital Research. Inc †Trademarked by the manufacturers noted The illustrations are artist's representations of graphs produced by Graffalk, and not actual reproductions Created and produced by DocuSet(TM)

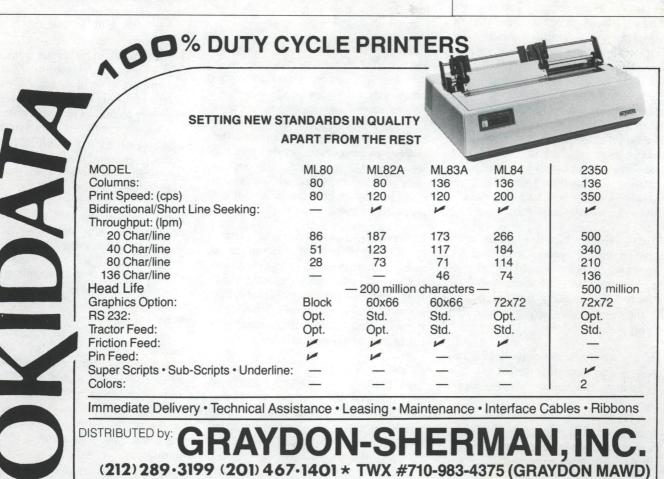
> Lifeboat Associates, SARL 70 Avenue D'Argenteuil 92600 Asnieres, France Telephone: (1) 733-08-04 Telex, 620154 (LBFRA)

Lifeboat Associates, GmbH Hinterbergstrasse 9 Postlach 251 CH 6330 Cham, Switzerlar Telephone: 042/36 8686 Telex: 865265 (MICO CH) Intersoft, GmbH Schlossgartenweg 5 D-8045 Ismaning, W. Germany Telephone: 089 966-444 Telex: 521 3643 (ISOFD) Lifeboat, Inc. 5-13-14 Shiba Minato-ku, Tokyo, 108 Japai Telephone, 03-456-4101 Telex, 2423296 (LBJTYOJ)

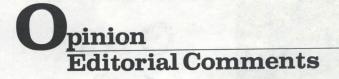




Lifeboat Associates World's Foremost Software Source The exchange library of The CP/M<sup>®</sup> Users Group (CPMUG<sup>™</sup>) contains 100's and 100's of programs catalogued into over 80 volumes of software available to you at nominal cost.


Everything from:

- Languages such as FELIX, SAM76, BASIC E, etc.
- Assemblers and Disassemblers
- Editors
- System utilities, including a complete disk cataloging system
- Games, including Adventure
- Special applications such as Animation and Computer music
- And almost everything in full source code.


The complete catalog of CPMUG volumes is available for \$6 prepaid to the U.S., Canada and Mexico. \$11 prepaid to all other countries.

\*Domestic price for 8" disks. Inquire for NorthStar and overseas pric opyright©1982, by CPMUG. IP/M, reg. trademark of Digital Research, Inc. he CP/M Users Group is not affiliated with Digital Research, Inc

## THE CP/M USERS GROUP 1651 Third Avenue, New York, N.Y. 10028



Over 10 MBytes Of Software At \$8 Per Diskette Full



#### All things come to those who wait ....

Interestingly enough, microcomputer telecommunications is evolving rapidly for microcomputer systems and this, as we shall see, is indeed a timely development.

IBM decided some years ago that the world's supply of programmers was, in their words, "running out". This led them to study in more detail how best to meet the growing needs for computers. Several interesting conclusions were drawn.

For one thing, the average response time of a human was determined to be on the order of one hundred milliseconds. IBM's studies showed that it is very important for a computer system's response time to be compatible with its human counterpart since a slower system response time would result in an interruption in the thought processes of the user. Ideally all operations and concatenations of operations should take place in less than one hundred milliseconds.

Furthermore, data movement and manipulation were found to be often more important than data reduction. The establishment and maintenance of data bases from which data could flow and ebb was another important consideration. The ability to move large masses of data over large distances is obviously equally important.

Clearly floppy-based systems with three to ten millisecond track-to-track times are not likely to yield overall system response times of fewer than one hundred milliseconds, but micros can be the vehicle for the movement and manipulation of data.

The simplest mechanism for linking micros to other micros, as well as to larger computers, is currently via telephone lines.

As mentioned in previous editorials, a flurry of activity has occurred with the advent of computerized bulletin boards. These systems typically support the transfer of programs/data at baud rates of 300-600 and in some cases as high as 1200 baud. A significant body of software has resulted from interests in such systems.

Another development in the microcomputer field is also having an impact upon the growth of microcomputer telecommunications, while appearing to be somewhat unrelated.

Since it is true that many microcomputer operations are not "compute bound" but rather "I/O bound", software developers concluded that this spare CPU time could be used to good advantage. From this conclusion sprang the multiuser operating system for microcomputers. Unfortunately eight-bit architecture does not lend itself well to such designs. To date the various multiuser systems for micros have for the most part met with little success, due to several factors.

Curiously enough, the significantly greater transfer rates possible with Winchesters have been overlooked by many system designers. Typically Winchester drives are configured to function as floppy systems with thyroid problems (i.e. they function as little more than oversized floppies) and the resultant I/O transfer speeds are so slow as to seriously degrade the system in multiuser applications in all but the most trivial cases.

However, multiuser software has proven to be of significant value in the multitasking environments of business and professional end users. In such situations a typical user does not want to lose access to his system while it is performing such simple tasks as transferring a file to another system or printing.

So-called "concurrent" systems support multiple tasks like background printing and file transfer via phone lines. These "background tasks" fortunately are slow enough to permit them to occur contemporaneously with foreground tasks, such as word processing, applications programs, assemblies, etc.

Thus the agonizing over the best schemes for locking records and files, and the protection of data bases' integrity against transgressions committed by trespassers in a multiuser environment can be avoided. There is still, however, the nagging problem of how to handle different tasks accessing the same files, so that the integrity of the data base is maintained.

Many hardware manufacturers are assisting. They offer buffering for printers which allows high speed bursts of data to be transferred to a printer buffer during slack periods, further freeing up CPU time. In those cases where CPU time is available, considerable advantage is gained by passing as much data as possible to the buffer. Then when CPU demand becomes critical for other activities, the printer has lots of text to print while waiting for the next time the CPU is available.

Five, six and eight megabyte clock rates for the standard CPUs further facilitate the support of multitasking. Add to this the buffering employed in many of the newer terminals to avoid character loss, together with faster track to track times, transferring of whole tracks into memory, etc. and you can readily see that the ground work for multitasking is being laid rapidly.

The advent of low cost 64K DRAMs (Dynamic RAMS) means that micros capable of addressing a megabyte or more of memory will be commonplace. This means, among other things, that multiple tasks can reside in memory simultaneously to further increase system throughput.

Finally, the use of DRAMs to simulate floppy disks (a virtual floppy) will do much to increase effective disk access and at prices which are well within the reach of most end users. Expect to see many memory vendors offering the software necessary for floppy simulation.

(continued on page 11) Lifelines/The Software Magazine, June 1982



#### Pick your modem, folks

Although direct-connect modems have been available since the mid-seventies, the latest advances in LSI technology have made it possible for modem manufacturers to develop an entirely new breed of low-cost direct-connect modems.

Specifically, modem manufacturers are offering designs with a number of attributes that greatly simplify integrating a modem; these include:

- Increased use of LSI and uP technology to reduce overall size and cost
- Modular sub-system packaging
- Flexible interconnects; cable and direct pin
- FCC certification
- Auto functions: dialing and answer, plus stored number features

This new breed of modems is significant because they reduce overall system complexity by eliminating extra cables and circuitry required for RS-232 interconnection; they also reduce the extra power supply required, since most operate off standard voltages available within a system.

Moreover, by using modular designs such as those offered by Novation and Rockwell, for example, you can "design in" a modem to best fit your space and operational requirements.

The Novation module series consists of a low speed modem P/N 490280-X and the phone line interface P/N 490278. The 1200 baud 2- and 4-wire Bell 202 compatible version (designated by -2) of the modem module is priced at \$74(500), with a similar price for the phone line interface.

The modem module employs LSI technology, is crystal controlled, and operates at 300 and 1200 baud in either half or full duplex. In addition, the module, which measures  $2.1 \times 2.75 \times .5$ -in., features answer/originate, self test mode, dial tone/busy filter mode and can be easily programmed by uP or switch controls. The phone line interface occupies the same amount of space as the modem and if added provides FCC certification as well as automatic pulse and tone dialing with an external uP.

Rockwell International offers similar capability with the R24 2400 bps integral modem package. This modem series is a high performance synchronous serial 2400 bps DPSK modem. The modem employs MoS/LSI technology and is implemented in three modular building blocks: a transmitter Module T at \$118; a receiver in two modules R1, R2 at \$218; a complete kit is available for \$395.

The Rockwell modules allow you to implement a modem using only those modules necessary for the operation. Like the Novation modules, Rockwell's designs offer FCC registration, Bell 201 B/C and CCITT V.26 compatiblity.

Of course, not all applications call for modularity. Therefore, Rockwell offers the R24 fully configured on a  $5-\times7.8 \times.6$ -in board with full auto functions, FCC certified direct connect functionality and line equalization. The price is \$450.

In modern modems size is just as important as modularity. Currently, manufacturers are striving to develop modems which require as little real estate as possible, exemplified by the modular designs previously mentioned.

For instance, Radio Shack is offering the Modem II, for \$249. This modem is a Bell 103- compatible direct connect design, and uses a built-in uP to control the automatic functions: answer, originate, pulse and tone dialing, and auto on-hook off hook.

Universal Data Systems, however, has elected to be speedier with the UDS 212

#### CarlWarren

LP, priced at \$495 (single quantity). This modem is Bell 212-compatible and operates at 1200 bps; it's designed for direct connect applications, and uses line-derived power. The modem is 1200 baud only, and doesn't offer auto functions.

But if dual speeds and auto functions are a requirement, you should consider the Codex Model 5212R for \$695. This Bell 212A compatible modem employs uP control, and combines 300 and 1200 asynchronous functions as well as 1200 baud synchronous capability in one box. In addition to typical auto functions of auto answer, dial, and line control, the 5212R includes auto speed sensing and automatic switching to answer mode.

This size reduction is achieved by employing LSI and uP technology for everything from control to the analog portions of the modem.

Furthermore, box modems designed to plug into a terminal or system are being offered with some innovative packaging. The Universal Data Systems Model UDS 202 LP, 0-1200 bps half duplex two-wire model, priced at \$265(25), for example, is designed in a slimline package to fit directly under a telephone. The small size is achieved by deriving power from the telephone line (20 mamp at 5 V, 13 mamp internationally). The goal of this type of modem, also available as a board level product, is to give hardwire functionality with acoustic coupled portability. This goal has become much easier to achieve with the now-relaxed requirements for a Direct Access Arrangement (DAA) for using the Bell switched network system.

Not everyone is opting for the same design philosophy, though. The Microperipheral Corporation offers a slim line 300 bps modem for personal computers, priced at \$199.50 with a \$79 autodial option. This modem fits neatly under the telephone, but rather than using the line voltages requires a small (continued next page) 5V power source. This design, according to the company, is to ensure that adequate power is available for the various functions their modem permits.

#### Still more to choose from

Depending on your application, you might elect to choose from among the many offerings of Astrocom Corporation. For specialized applications, you could look at Model 140-0, which transmits at 150 bps and receives at 1200 bps in an asynchronous mode 4-wire full duplex, or the model 140-A which transmits at 1200 bps and receives at 150 bps. Astrocom supplies modems either boxed for plugging directly into a system, or on the card level.

If you're looking for a design with such full features as 1200 bps operation, auto dialing and answering, touch tone signaling and the ability to understand either direct or system commands, you might want to check out the Model 1012 Intelligent Modem from Bizcomp Corporation. This \$895 modem offers user programmable answer back, the ability to store the last number dialed, FCC certification, and automatic speed sensing. If you don't need the modem packaged the company offers it at the board level.

Another notable modem design is the VA3450 series of triple modems offered by Racal-Vadic. These modems, which sell for around \$350(25), include Vadic VA3400, Bell 212A and 103 compatibility in a single package. Moreover, the modem operates in either a synchronous or asynchronous mode, depending on operation. The Vadic and 212A portions employ a quadrature AM four level PSK modulation scheme, while the 103 portion uses binary phase coherent FSK. The VA3450 series also sports a receiver sensitivity of -50dBm when receiving with equalizer in, and in the 103 mode operates at a nominal -45 dBm.

Offering a similar modem is Prentice, with the Model P-V.22. This unit (priced at \$1034) meets CCITT v.22 standards and has 2-wire full-duplex capability; data rates of 1200 and 600 bps are possible in the synchronous mode, while 1200, 600 and 0-300 bps rates are possible in the asynchronous mode. If your application calls for speed above 1200 bps, the Codex Model 5208R Data Modem might fill the bill. This \$2450 modem offers strap selectable switching between Bell 208A (leased line) and 208B dial up line modes. In addition, the modem sports self-testing and condition reporting via front panel LEDs.

Another modem for high speed operation is the Kinex Microprocessor Data Modem K9600. This \$3950 unit meets CCITT v.29 standards, operates over 4-wire unconditioned domestic and international leased voice grade lines, and provides user selectable data rates from 4800 to 7200 bps, to accommodate severely degraded lines.

The K9600 is unusual in that all functions (including filtering) are implemented using firmware. This feature, explains company president Carl Nordling, means that all updates to the modem can be accomplished in the field at very low cost.

Still notable, but not falling into the direct-connect class, is Paradyne's Model T-96 priced at \$2515(100). This 9600 bps modem is intended for use in full-duplex, point-to-point applications, and features a training time of 253 Msec, fallback operating rates of 7200 and 4800 bps; and it is CCITT v.29 compatible. Like other modems in its class, the T-96 sports built-in diagnostics and permits either local or remote testing.

#### The 300 bps connection

Although data rates of 1200 bps and above are rapidly gaining great importance for high speed transmission in the commercial world, 300 bps modems are still well-entrenched for personal computers.

One innovative design that meets the personal uC user's requirements of direct connect and low price is the Model TC 4007 from Tek-Com. This \$495 modem operates at 0 to 300 bps, has a dynamic range of -10dBm to -56dBm, is FCC certified, and sports a built-in dialer with automatic re-dial capability. In addition, the TC 4007 allows for field programming of an auto dial function either via the built-in keypad or by the uC system software.

A unique design built around the Motorola 6860 modem chip is the BC 103, a 300 bps modem from BC Electronics. This \$225-modem offers auto answer, and dialing. The BC 103 is strictly a hobby modem and is sold through Heath Electronic centers, as is the optimized HDOS operating system designed to work with it.

Considered the undisputed leader in 300 bps modems for personal systems is Hayes Microcomputer Products Inc. The latest model yet introduced, called the Hayes Stack Smartmodem, is designed to operate with any system with an RS-232 serial port, and can be controlled by any language using ASCII character strings. This FCC-approved modem sports built-in diagnostics, and a system monitor program that controls the functions of the modem. In addition, the \$279 modem supports touch-tone or pulse dialing and can work through a PBX board.

#### Look at the standards

Virtually all modems currently available conform to either those standards established by Bell or the standards established by the Consultive Committee for International Telephone and Telegraph (CCITT). The latter's standards are rapidly becoming the most widely accepted, because of increased world-wide data communication, with even Bell moving towards the CCITT definitions.

These standards are those definitions describing exactly how signaling will be executed over a given line; bandwidths, scrambling, and training sequences are laid out so that compatibility exists between modems. Of course, other methods do exist but currently design criteria for modems operating over the switched network, or private 3002 series lines, require compliance with the accepted standards.

This compliance, although it helps avoid chaos in the communication world, isn't cheap. Meeting Bell 212 standards for 1200 baud operation, for example, ups the cost of the modem, since extra circuitry is required to fulfill the standards requirements.

#### Information pushes designs

Another influence that is pushing rapid innovations in modem design is the increasing use of dialup databases, like those offered by Compuserve (Columbus OH), and The Source (McLean, VA).

According to a report from the Yankee Group (Cambridge, MA) by 1989 it is expected that 65 percent of American women will have full-time jobs, leaving 60 percent of all metropolitan households unattended during school hours. This is likely to fuel demand for home security systems and remote-controlled appliances, stimulating a need for very specialized communications devices. In addition, because of the time being taken away from traditional homemaking, it's expected that services like QUBE (Columbus, Ohio), Viewtron (Coral Gables, FL), and Hi-Ovis (Osaka, Japan) will become commonplace, as they offer the general public two-way communication for handling everything from banking to shopping.

Moreover, systems like The Microperipheral Corporation's 'public modem', a variation of the Bell 202 type device, will grow in usage. This 'public modem' is capable of continuous reception of data at 1200 baud while simultaneously sending data at rates of up to 150 baud. The modem is connected to the terminal at 9600 baud, for example, and through speed-changing circuitry the transmission speed over the line is lowered to 150 baud. Currently, the 'public modem' is priced at \$199.50 with a \$49 autodialing option.

The Microperipheral Corporation's chief engineer, Don Stoner, explains that cost can be lowered by developing modems with slow transmit speeds but high receive rates. He expects that similar techniques will be employed even as LSI costs go down. What *will* change, however, will be the speeds. So don't be surprised to find under-\$200, full-duplex 1200/4800 bps modems as early as 1983.

In related moves towards greater flexibility in providing communications functions, a number of terminal manufacturers are getting on the communications bandwagon, by providing useroriented communications terminals.

One company seeking to provide remote data communications capability at a low price is Zenith Data Systems (ZDS), with their model ZT-1 personal information terminal. The ZT-1, introduced this past March at the West Coast Computer Faire (held in San Francisco, CA.) was developed, according to product line manager Michael Brenner, to meet the needs of new information services like the Source (McLean, VA).

The ZT-1 is a two-piece unit made up of a keyboard terminal, and the Zenith ZVM-121 video monitor. The keyboard unit measures 2.9-× 15.4-× 7.1-in. weighs 4.4-lbs, and houses a Bell 103, 300-baud modem, a 63-key keyboard with 26 alphabetic, 10 numeric, 4 cursor/special function keys, a serial RS-232C port selectable from 110 to 2400 baud, and a Centronics type 8-bit printer parallel port. The system I/O is controlled using an Intel 8051, and battery backed-up CMOS memory is utilized for storing directory information, used by the automatic dialing function.

The video display unit weighs in at 14-lbs. and measures  $11.75 - \times 16.25 - \times 12$ -in.; it has a green phosphor screen, supports a display format of 80 characters by 25 lines with a character matrix of  $5 \times 9$  in a  $8 \times 10$  character field. In addition, the CRT has a bandwidth greater than 15MHz, and a typical video rise time of 50 nsec.

Connecting the ZT-1 to the telephone line is handled by a standard RJ-11C, 12C, or 13C telephone jack. The dialing method is pulse, which some observers feel may be an inhibiting factor should the terminal be employed in an office with a computer controlled PABX.

On power up, the ZT-1 displays the choices available. A series of menus or indices makes it possible for you to choose one key for most functions; the functions include: setting terminal parameters; baud rate (110-300); sign on message sequence for a remote service; parity and data word length. The ZT-1 also has the ability to enter up to 26 telephone directory numbers. Once entered, the numbers can be dialed by simply tapping the appropriate letter.

In addition to serving as a communication terminal, the ZT-1 can be attached to a printer and used as a low-cost electronic typewriter with essentially one page of storage. Or if you like, received information can be driven to the printer, with automatic XON/XOFF protocols to avoid loss of data due to a filled buffer.

Interestingly, the ZT-1 is offered at \$695 (single quantity), and ZDS is willing to provide custom firmware to fit your specific needs. In addition, you can probably expect some more addons to turn the system into a relatively low-cost uC – and possibly a LAN node, by year's end.

Offering similar capability, but with a different twist, is Tymshare, with the Scanset personal information terminal. This terminal, ranging in price from \$495 for the Model 410 without an integrated modem to \$649 for the Model 415 with modem, was designed and built by the French manufacturer MATRA.

The Scanset units have six multifunction keys that you can program, or it will accept downloadable information from a host. Up to 12 user-defined tasks can be assigned to the keys, providing easy access to host systems or frequently-used data bases.

The autodialer feature of the Model 415 can dial up to 36 phone numbers stored in the terminal's inviolate memory, and automatically handle the necessary password and sign-on functions.

Like the Zenith terminal, the display handles an 80 character by 25 line display with the twenty-fifth line serving as a function key descriptor. Unlike the Zenith system, however, the Scanset employs a 9-in. screen, and has a builtin speaker that echoes the line during dialing and connect.

The Scanset is also smaller, measuring  $9.5- \times 10.25- \times 14.5$ -in. and weighing 12-lbs. Furthermore, the terminal is a single unit with a small square button 63-key keyboard, not really suitable for typing, a factor which Tymshare officials consider unnecessary for database query.

The Scanset employs a 6802 uP, and battery backed up CMOS, which like the Zenith unit is recharged every time the terminal is plugged in. Should higher speed than 300 be important, Tymshare also offers an optional Model 912, a Bell 212A compatible modem for \$900.

Although modems are built to exacting (continued next page)

standards established by Bell and CCITT, you might want to consider implementing an alternate approach, especially if you're establishing a Local Area Network (LAN).

The method is to employ a new modem design from The Microperipheral Corporation. The yet unnamed modem operates at 4800 bps, has no filters and sells for about \$75 in OEM quantities. The technique, explains Don Stoner, is to encode data on the half-cycle. One bit of data at 4800 bps, for example, is equal to one-half cycle of 2400 Hz; by knowing this and using zero crossing detectors in the receiver the time domain between the zero crossings conveys the digital information. Through this technique, the signal amplitude becomes unimportant and obviates the necessity of building in line conditioning circuitry and providing training sequences.

Even though the modem doesn't conform to accepted standards, Stoner believes that personal computer users will find it more than acceptable, since they can set up high speed networks for very little cost. Moreover, he believes that timesharing houses will find the modem acceptable, since an infinite number of them can be connected together with the controlling function being the Clear to Send (CTS) line. Stoner explains that it's very much like a hardwire network system with masters and slaves.

Because this modem approach is so much like a network server concept, software is required to arbitrate line collisions, and to set priorities.

#### A few buying rules

If you're in the market to buy a modem, you might do well to follow some simple rules offered by Jim Jordan, president of Moxon Electronics Anaheim, CA.

Jordan suggests that you contact those vendors with a reputation for reliable delivery, who can meet the quantities that you need. Next, visit the plant and see how the modem is made. Look for ATE equipment, and a smooth manufacturing flow.

Should the vendor(s) meet your expectations, take a look at the packaging. Specifically, look for Bell 103/212 functionality: for example, insist on built-in diagnostics, look for auto functions and stored number features. Most importantly, pass on anything that isn't FCC registered.

Jordan points out that just about anyone can build a modem and that pricing is about the same across the board. The real difference, therefore, is in who is the most responsive to your needs and can make a major commitment.

#### For more information...

For more information on the modem products discussed in this article, contact the following manufacturers directly?

Astrocom Corporation 120 West Plato Blvd St. Paul MN 55107 (612) 227-8651

BC Electronics 1001 W. Kristal Way Phoenix, AZ 85027 (602) 869-9650

Bizcomp Corporation P.O. Box 7498 Menlo Park, CA 94025 (415) 966-1545

Codex Corporation 20 Cabot Blvd Mansfield, MN 02048 (612) 364-2000

Hayes Microcomputer Products Inc 5835 Peachtree Corners East Norcross, GA 30092 (404) 449-8791

Kinex Corporation 6950 Bryan Dairy Rd Largo, FL 33543 (813) 541-6404

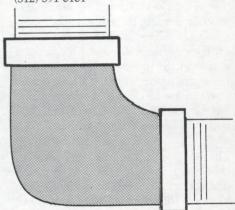
The Microperipheral Corporation 2643 151st Place N.E. Redmond, WA 98052 (206) 881-7544

Novation 18664 Oxnard St Tarzana, CA 91356 (213) 996-5060

Paradyne Corporation 8550 Ulmerton Rd Largo, FL 33541 (813) 530-2000

Prentice Corporation 266 Caspian Dr Sunnyvale, CA 94086 (408) 734-9810 Racal-Vadic Inc 222 Caspian Dr Sunnyvale, CA 94086 (408) 744-0810

Rockwell International Electronic Devices Div 3310 Miraloma Ave P.O. Box 3669 Anaheim, CA 92803 (714) 632-3729


Tek-Com Inc 2142 Paragon Dr San Jose, CA 95131 (408) 263-7400

Universal Data Systems 5000 Bradford Dr Huntsville, AL 35805 (205) 837-8100

Tandy Corporation/Radio Shack 1800 One Tandy Center Fort Worth, TX 76102 (817) 390-3300

Tymshare Corporation 20705 Valley Green Drive Cupertino, CA 95014 (408) 446-6000

Zenith Data Systems 1000 Milwaukee Ave Glenview, IL 60025 (312) 391-8181



#### -Notice-

The May issue was placed into the mail on April 25th. If you had any problem with the timeliness of this issue, please call our Subscription Department at (212) 722-1700, or write to Lifelines/ The Software Magazine Subscription Department, 1651 Third Ave., New York, N.Y. 10028. We expect to place this issue, dated June 1982, into the mail around May 29th. We will print each month the date of the previous issue's mailing and would appreciate your help in tracking the deliveries.

#### (Editorial Comments, continued from page 6)

Ultimately, the drastic reduction in hardware costs means that each end user will typically have their own printer and mass storage devices and therefore a vested interest in multitasking.

Thus it appears that multiuser systems may well be prevalent, but multitasking will undoubtedly take precedence

File servers, which are devices for supporting access by a number of microcomputers to a Winchester disk, are also evolving rapidly for the implementation of local networks of micros.

Transfer of data via phone lines does introduce a number of additional needs for standardization. For example, handshaking is imperative in order to assure that file integrity is maintained. Compression schemes have also evolved rapidly in order to avoid needless transmission of large numbers of blank lines, spaces, tabs etc. These schemes must be standardized, so that files can be readily and reliably moved from one location to another. Also very important are schemes used for files with embedded format instructions, like those produced in word processing applications to be readily interpretable by other word processors from different vendors.

Thus it appears that multitasking will come into widespread use rapidly, with considerable emphasis placed upon telecommunications.

Note that all of the handheld micros are supported with telecommunications schemes. A particularly exciting development is the announcement by Sinclair, Sony, et. al. of flat, miniature TV screens of various designs. Liquid crystal as well as CRT technology will soon provide a handheld computer the size of a book which will, with bubble memory or other suitable mass storage, mean a system with mind-boggling capabilities. Imagine a handheld, multitasking microcomputer with virtual disk storage, optional miniature floppies, integral 24x80 CRT, full keyboard, built-in modem and printer in a package, all fitting easily into your attache case.

One of the areas now receiving considerable attention is computer graphics. Newer micros will undoubtedly be designed to support various graphics schemes, some of which will have incredible resolution. Printer graphics of surprising resolution are rapidly coming into widespread use as well. Light pens, touch screens, voice recognition and speaking terminals are also becoming more prevalent. Clearly, all of these features are greatly enhanced by a multitasking environment.

In the years ahead software authors have their work cut out for them to take full advantage of all of these exciting hardware developments.

Perhaps the best part of all is that their efforts, together with the emerging hardware technology and falling hardware costs will place these micros within everyone's reach. And all we have to do is wait ... and not too long at that ...

## ANNOUNCING THE FOX & GELLER **BASE II PROGRAM GENERATOR! QUICKCODE**<sup>TM</sup>

Now, without *any* programming, you can create these in seconds:

- \* DATA ENTRY PROGRAMS
- \* DATA RETRIEVAL PROGRAMS
- \* DATA EDIT/VALIDATION PROGRAMS
- \* MENUS
- \* dBASE FILES

#### **INTRODUCING FOUR NEW DATA TYPES:**

#### DATE • DOLLARS • TELEPHONE • SOC. SEC. NO.

With QUICKCODE, you can **have** your program, but you don't have to **write** it. So, you can do things like knocking out an **entire accounting system** over the weekend! And QUICKCODE includes a powerful new version of our popular QUICKSCREEN<sup>TM</sup> screen builder, so you will put together screens and reports that'll dazzle even the most skeptical (you can even use Wordstar<sup>TM</sup> to set up your screen layouts).

#### YOU MUST SEE IT TO BELIEVE IT.

And is QUICKCODE EASY TO USE? You never saw **anything** so easy. You don't have to know how to program. You don't even have to answer a lot of questions, because there **aren't any!** 

### QUICKCODE \$295

#### **ALSO FROM FOX & GELLER**

#### QUICKSCREEN

| Microsoft BASIC version | \$149 |
|-------------------------|-------|
| CBASIC version          | 149   |
| dBASE-II version        | 149   |
| dUTIL dBASE utility     | 75    |

#### Fox & Geller Associates P.O. Box 1053 Teaneck, NJ 07666 (201) 837-0142

dBASE-II TM Ashton-Tate Wordstar TM Micropro Int'I

#### Features

## **A Review of FMS-80**

Mark Rettig

#### Name of package: FMS-80 Release 2.21D

#### Author:

David Rodman, DJR Associates Distributed by Systems Plus, Inc.

#### Addresses:

Systems Plus 1120 San Antonio Road Palo Alto, CA 94303 Phone - (415) 969-7047

DJR Associates 2 Highland Lane North Tarrytown, NY 10591

You may have seen the recent full page advertisements for "FMS-80: The Two Door Data Base Plus", and wondered whether it really lived up to all its claims. I first saw FMS (File Management System) nearly a year ago, and was impressed enough to choose it over all the other file management systems on the market, thinking it was exactly what I needed to develop a rather extensive data management application. My experience with FMS-80 has been much like my experience with my first high school girl friend: I fell in love for a month, became disillusioned when I learned she wasn't perfect, and finally decided to be "just friends". That could be an outline of this review.

FMS-80 is a large and very powerful package. You could use it to develop a major application and still not find occasion to utilize all the features or explore all the possibilities. This review will describe the major components of FMS and briefly evaluate their effectiveness and ease of use.

Installation was no problem. Parameter files are included for many popular terminals, and a utility is provided to set up FMS for systems whose parameter files are not predefined. Once you get everything up and running, you can easily customize many features to suit your taste. For example, reports can be routed to different devices, paper size defined, file name conventions can be changed, and default drives for different file types can be specified. Nice.

The tutorials in the manual are great for learning the system initially. Overall, the tutorials are the best part about the documentation. It is easy to learn the basics, but the manual suffers somewhat from a lack of examples in the reference section (the report generator excluded). Some help in that area is found in the diskette of sample programs, which contains some very helpful code (some of it is even useful!). Between that and the manual you have most of what you need.

#### FMS-81: Menu-Driven Utilities

If an application neither involves complex relationships between records nor demands that many files be opened at one time, it could probably be developed using only the set of menu-driven utilities marketed as FMS-81. The command language is sold separately as FMS-82, so non-programmers need not spend money on something they will never use. Whatever you are doing, the first part of FMS you see, and the part you will use in first setting up your application, is the set of menu-driven utilities provided in FMS-81.

Despite what the ads might say, FMS is a file management system and not a data base management system in the strict sense of the term. This means that the user must be concerned with the physical structure of his files, and take pains to insure that file indices are current. For the most part, record updating is a "batch" process of applying a transaction file against a data file. This set of menus and utilities is designed to make all that as painless as possible, and saves the nonprogrammer from having to learn all about file management to develop his application. The menus are divided basically into three functions: file definition, file maintenance, and report generation. These are described below.

#### **Definitions Editor**

File definitions, screen and menu definitions, and report definitions are all created using a "split-screen editor". The bottom of the screen provides a place for entering field names, data types, headings, etc., and the top is where you see the results of what you typed in. FMS's editor is not like a screen or line editor where you can type in a free format. It is a very specialized editor which helps you enter valid definitions through its formatted entry area, by reminding you of what is valid, and by refusing to accept things like invalid field types or digits in an alphabetic field. This helps make life easier. The only features the editor lacks are a few short-cuts, such as the ability to copy or move entries. If you have a long definition to key in, be prepared to sit down and type it all, even if many entries are nearly identical.

The definitions themselves are very straightforward. For file definitions, specify the field name, data type (alphanumeric, decimal, or variable length), field length, and, in the case of decimal fields, "picture" format. Screens for data collection and display are set up just by telling FMS what fields and literals to display and where on the screen to put them.

One type of definition merits special mention: the menu definition. By using the same editor described above, you can develop menus to tie all the functions of a custom application into a package. If you've ever coded such an animal in BASIC you can appreciate the following procedure. Just tell FMS where to print the options on the screen, and what programs, screens, SUB files, or other menus to execute for each option, and FMS takes care of the rest. Without coding a line, you can set up a custom menu-driven application full of screen input, sorts, selects, and reports. Of course there are limitations, but for many common office and information handling chores, this is just the ticket. I found this feature to be helpful in setting up a development environment for myself. A "testing system" can be set up with menu options to enter your favorite program editor, to compile your EFM programs, and to run each one with test data. Other options can print reports of test results.

#### File Maintenance Utilities

Now that you have all those files defined, it is time to do something with them. The File Maintenance Menu provides facilities for entering data into your files, sorting files, and updating the index for random access. Each of those functions can be performed separately, or the "update" option can be used to do them all in one swoop. You enter "add", "change", or "delete" transactions, validate and sort them, apply them to a data file, and update the index to the file all in one operation.

Rejected transactions are written to a file for later examination. Update can be combined with a screen definition for "instant" custom data-entry, complete with validation of data types and transactions. This whole process is pretty straightforward, and once you get used to it you can get a lot of work done in a short period of time. Besides the update utility, a few CP/M facilities are available, such as ERAse, REName, and DIRectory, or you can execute a CP/M SUBMIT file. If you are imaginative you can get very creative with just CP/M SUBMIT files and FMS commands.

One other way of browsing and updating files is through the "Direct Query/Update" utility. It is faster than "update", but watch out when you use it, as it does not leave a printed transaction trail or update the index to the file.

#### **Report Generator and Selections**

FMS includes a very complete report generator. I can't think of anything you might need to do in a report that isn't provided for here. Reports are defined using the familiar definitions editor, and one command applies the report definition to a file to produce printed copy. You can produce summary totals at field breaks, page breaks, and end of report; headers, footers, page numbers and dates can be placed appropriately. New fields for the report can be calculated from fields in the file being printed.

By creating a "selection definition", you can get a report of only the records in the file meeting specific criteria. Those criteria can be fairly complex. Records can be chosen based on whether certain fields equal a value or fall within a certain range. Criteria can be combined using logical operators. For example, a selection might be made in a sales application for all records whose department equalled "sports" or whose salesman was "Jim" and whose quantity was less than 100. Of course, use of selections is not limited to the report generator. Output from selections can be routed to a disk file as well as sent directly to the report generator.

#### SHELL-80

An interesting and powerful feature of FMS-80 is called "the SHELL". What it amounts to is a command line monitor which replaces that of CP/M, and provides an area of storage that remains "live" across program calls. This means that command streams can be built dynamically, programs can easily be linked with menus and other programs, and programs can receive input from text files rather than the keyboard. By setting a "base program" before calling other programs, return to the caller is guaranteed no matter what happens in the called routine. The SHELL is the heart of FMS. and is an exciting idea. It makes possible such niceties as the "help" facility, which allows applications screens to be tied in with text screens. While the utilities are in use, SHELL-80 is invisible and many users will never need to bother learning about it. An applications programmer has an interface with it through EFM, FMS-80's command language. If you really want to get into it, all you assembler types can order the SHELL manual and opcode your hearts out.

There are twenty-seven functions available through the SHELL, such as: SUBMIT, which submits any CP/M command for execution, set base program, return to base program, and get console input from a file. One drawback. I had a hard time figuring out how to use the SHELL, and had to get help from my dealer. The problem isn't so much the product as the documentation, which dedicates only nine pages to describing the SHELL and its commands. The manual does not tell you how to use the SHELL. The SHELL manual, available separately for \$15, is some help, but is mostly for assembler programmers and is still only forty pages long. If you have time to experiment, great. If not, find somebody who can help you out, or call Systems Plus. They do their best to aid bewildered programmers, and their best is pretty good. You may have to pester an operator to finally get your man. They seem to be pretty busy out there. But once you get help, you'll get help.

#### FMS-82: The EFM Command Language

So far, so good. We have everything defined, data keyed in, reports coming out, and the package is tied together with nice menus. But now, suppose your needs are a little more complicated. You want to display information from two or three files at a time on a single screen, or have input from one screen update several files. That means it is time to use EFM, the command language of FMS-80. EFM, in case you were wondering, stands for Extended File Maintenance – perhaps the idea is that you can go beyond the file maintenance capabilities provided in the utilities described above.

EFM has some good features, the strongest of which are the file access and screen development commands. You can (continued next page) perform random and sequential access and update of up to nineteen files in a program. Through the SHELL, programs can call other programs (even BASIC programs) or execute CP/M commands. Given time and the patience of Job you could write some very complex applications in EFM. Screens are fairly straightforward to write, and with the use of graphic characters and reverse video, you can make them look very classy. It is really a lot of fun to write a screen and then see FMS make it look fancy by allowing wild-card searches and validating all the input. Execution is reasonably fast, and once the indices are loaded into core, random access of files is also fast.

Another good feature of EFM is its compiler. Although it may seem limited compared to some of the bigger compilers around, it serves a great purpose by reducing source code to a module about one third its original size. This process seems to involve the removing of blank space and the replacement of keywords with tokens. The compiler catches most syntax errors, and tries hard to let the programmer know what he or she did wrong. It occasionally gets confused, but don't we all? The compiled modules are not directly executable COM files, but require, along with them, a run time module in core to be executed. All this is very good. But there are some weaknesses which offset the good points of the language and are somewhat limiting: the lack of control structures, the lack of named variables, and the lack of string handling functions.

The language contains just barely enough control structures to let you get through a program. It has IF - THEN - ELSE, a SWITCH statement (case structure), and provision for CALLing internal subroutines. That is all. There are no loop structures and nested IFs are not allowed. Of course, this can be overcome by careful use of labels, CALLs, and GOTO statements, but such coding takes time, is awkward, and discourages good programming habits.

The use of variables in EFM is very limited. Data types are character, decimal, and variable length characters. Named variables are limited to the letters A - Z, which must be decimal numbers. All other variables are referred to by a pair of numbers representing the file number and field number. The third field in the first file opened for input is referred to as "1,3". Its header in the file description might be "number of widgets", but unless you comment your code thoroughly or memorize all your file descriptions you will have no idea what "1,3" means when you see it on page three of your program. To add two fields together you would say something like "1,5 = 1,5 + 3,2". You could write that in the morning, read it at lunch time, and have no idea what you meant by such an incantation. By setting up a dummy file description you can have temporary storage for up to 255 fields which you can use as program variables. But these are still referenced only by number. So to write an EFM program you need at hand printed copies of all your file descriptions and your temporary fields. And unless you comment every line, the program will be completely unreadable five minutes later.

The third major weakness of EFM is its lack of string handling functions. To get at the middle of a field you have to assign it into shorter temporary fields, taking advantage of right and left truncation of character and decimal assignments. That works okay for numbers, but is awkward. But alphabetic strings cannot be assigned into decimal fields, which means

there is no easy way to get at just the right end or middle of a string. If you must do this, you have to write a dummy file description describing the piece you want as a separate field, and reading the record using the special description! It's enough to bring tears to a whole truckload of BASIC programmers, and will cause a PL/I-80 programmer to faint dead away.

The result of this deficiency is that a system of any complexity will be very difficult to maintain and change. Adding a field on the end of a file may not be much problem, but to add one in the middle means changing almost every statement and comment in every program that uses that file!

Programming in EFM should be carried out with careful attention to "good habits", like thorough commenting and segmentation of programs into modules that perform only one function. Try to make sure a block of code only affects variables having to do with its function, and put a piece of comment up front to tell what variables it is changing. Your comments will not take up internal storage, thanks to the compiler, and you will thank yourself for trying to use structured methods in your programming. You will probably find blocks of code that can be used in several programs and deserve to be saved as separate "include" files. This also will make changes easier to do later on. See the reference section at the end of this article for some help in this area.

By now the reader should understand how one could have a love-hate relationship with FMS-80. One ray of hope comes from the fact that Dave Rodman and his co-workers at DJR associates seem to be very dedicated to supporting and improving their product. Release 3.0 is scheduled to come out this year, and they claim it will heal many of the ills mentioned in this review. Time will tell, but I think the next few years could see FMS become one of those "great" packages if Mr. Rodman keeps at it. Until then, I think I can be friends with release 2.2. As I learned with my high school sweetie, nobody's perfect.

#### **Review Summary**

#### Good Points:

FMS-80's strong point is its set of menu-driven utilities for quick and easy development of file management applications (available as FMS-81). For applications not involving complex relationships between records or accessing many files at once, FMS is great. As far as I know it is the only data management package around with such an extensive and well laid out "front end". Since it writes its files in ASCII, it could conceivably be used as a development tool to create files for input to other systems.

#### **Bad Points:**

Although FMS has a great deal of power, and large applications could be written with it, any complex application will involve programming in EFM, FMS-80's command language (available as FMS-82). EFM is a primitive language, and development time is increased by the lack of good variable naming, inadequate control structures, and absence of string handling functions. For data entry and display screens and access of a few files, it is adequate. If you want to do more than that, stay away from FMS-82 until it is improved.

#### TABLE I

Facts And Figures

#### Package and Version: FMS-80, release 2.21D

#### Price (Suggested Retail):

FMS-81 (File handling and reporting features)- \$495 FMS-82 (Extended File Maintenance command language) - \$495

#### Systems available for: CP/M, MP/M, CDOS, and TURBODOS

#### Required supporting software:

None for FMS-81, the menu-driven utilities. For EFM programming in FMS-82, you need a good text editor.

#### Memory Requirements: 48K minimum

#### Diskette capacity required:

Varies widely with the application, but for most two drives are best.

#### Utility programs provided:

A set of editors and screens for defining I/O screens, menus, files, keys, sorts and selections, and for printing descriptions of all types of definitions. Also EFM (Extended File Maintenance), a command language for developing custom applications. A report generator and a direct query/update utility are also provided.

#### Record size and type limits:

Each record may have 255 fields of 255 bytes. File size is limited by disk space. One variable length alphameric field is allowed on the end of a record, but random access is not allowed on files containing variable length fields. Up to 19 files may be opened by an EFM program.

There are three basic data types: decimal, character, and variable length character. Decimal fields may be given a picture format. In EFM, named variables are limited to 26 numeric variables named A - Z. A special file provides for 255 other temporary fields.

Numeric variables may range from -2,147,483,648 to 2,147,483,647. Numeric literals from -999,999,999 to 999,999,999. Character fields are limited to 255 bytes.

#### Portability:

Good portability between systems with like operating systems.

#### User skill level required:

A novice could develop an application which does not involve complex relationships between records or accessing many files at once.

An experienced programmer could develop almost anything.

#### Systems upgrade policy:

\$35 for updates to licensed owners.

| Α.                | Underlying Data Model<br>1. Data Types character, decimal, variable<br>length                                                                                                                                                                                                                         |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | 2. Relationships no inter-record or inter-file relationships supported.                                                                                                                                                                                                                               |
| B.                |                                                                                                                                                                                                                                                                                                       |
|                   | 1.a. Data dictionary maintenance<br>File definitions are the only "data dictionary".<br>They are created and changed through the file<br>definitions editor or through EFM. Programs<br>access files by referring to field number in the<br>file definition.                                          |
|                   | b. Data reorganization and conversion<br>Files can be referenced by many file descrip-<br>tions. Reorganization or additions to files<br>usually requires changing all related screen<br>definitions and programs. Anything but very<br>minor reorganization would require a con-<br>version program. |
|                   | 2.a. Data entry and editing<br>Good facilities for full screen entry, through<br>both the utilities and the command language.<br>Type checking for data entry is good. Data re-<br>trieval by partial keys (wild-card searches).                                                                      |
|                   | b. Report Generation<br>Extensive report generation with field, page<br>and report break totals, page numbering, and<br>header and footer lines. Supports calculation<br>of new report fields from fields in the file be-<br>ing printed.                                                             |
|                   | 3.a. Data selection<br>Good. Records can be selected by several cri-<br>teria and either written to a file, a report, or<br>simply counted for a report of the number of<br>records meeting the criteria.                                                                                             |
| The second second | b. Data joining and relating multiple data sets<br>A utility is provided to append one file onto<br>the end of another. No provision is made for<br>merging files or concatenating data elements<br>in FMS-81. An EFM program could easily be<br>written for such functions.                          |
|                   | c. Calculations on data<br>Full algebraic operations in EFM. The report<br>generator provides limited facility for calcu-<br>lation while printing.                                                                                                                                                   |
|                   | 4. Data independent application interface<br>Good. Data is stored in straight ASCII, so,<br>reading them into another system should<br>not be hard.                                                                                                                                                   |

**TABLE III** 

| ¢                                                                                                                                                        | TABLE II           Qualitative Factors                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                        | Rating *                                                                                                                                                            |
| Documentation                                                                                                                                            |                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                   |
| organization for                                                                                                                                         | learning                                                                                                                                                                                                                                                                                                               | 6                                                                                                                                                                   |
| organization for                                                                                                                                         | reference                                                                                                                                                                                                                                                                                                              | 4                                                                                                                                                                   |
| readability                                                                                                                                              |                                                                                                                                                                                                                                                                                                                        | 6                                                                                                                                                                   |
| includes all need                                                                                                                                        | led information                                                                                                                                                                                                                                                                                                        | 4                                                                                                                                                                   |
| Ease of use                                                                                                                                              |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                     |
| initial start up                                                                                                                                         |                                                                                                                                                                                                                                                                                                                        | 6                                                                                                                                                                   |
| conversion of ex                                                                                                                                         |                                                                                                                                                                                                                                                                                                                        | 5                                                                                                                                                                   |
| application imp                                                                                                                                          | lementation                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                     |
| FMS-81                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                        | 7                                                                                                                                                                   |
| FMS-82                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                        | 3                                                                                                                                                                   |
| operator use                                                                                                                                             |                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                   |
| Error Recovery<br>from input error                                                                                                                       |                                                                                                                                                                                                                                                                                                                        | 7                                                                                                                                                                   |
| restart from inte                                                                                                                                        |                                                                                                                                                                                                                                                                                                                        | 7                                                                                                                                                                   |
| from data media                                                                                                                                          | 3                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                     |
|                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                     |
| Support                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                   |
| for initial start u<br>for system impr                                                                                                                   | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                   |
| 1 = clearly un4 = good eno                                                                                                                               | ble will be in a 1-7 s<br>nacceptable for norr<br>ugh to serve for mo<br>, powerful, or very<br>tegory                                                                                                                                                                                                                 | nal use<br>ost purposes                                                                                                                                             |
| 1 = clearly ur<br>4 = good eno<br>7 = excellent,<br>on the ca                                                                                            | nacceptable for norr<br>ough to serve for mo<br>, powerful, or very                                                                                                                                                                                                                                                    | nal use<br>ost purposes<br>easy depending                                                                                                                           |
| 1 = clearly un<br>4 = good eno<br>7 = excellent,<br>on the ca<br>Summary of FI                                                                           | nacceptable for norr<br>ugh to serve for mo<br>, powerful, or very<br>tegory<br>Table IV                                                                                                                                                                                                                               | nal use<br>ost purposes<br>easy depending<br>Commands                                                                                                               |
| 1 = clearly un<br>4 = good eno<br>7 = excellent,<br>on the ca<br>Summary of FI                                                                           | nacceptable for norr<br>ugh to serve for mo<br>, powerful, or very<br>tegory<br><b>Table IV</b><br>MS-80 Utilities and                                                                                                                                                                                                 | nal use<br>ost purposes<br>easy depending<br>Commands<br>ption                                                                                                      |
| 1 = clearly ur<br>4 = good eno<br>7 = excellent,<br>on the ca<br>Summary of FI<br>Command Name<br>APPEND                                                 | nacceptable for norr<br>ugh to serve for mor<br>, powerful, or very<br>tegory<br>Table IV<br>MS-80 Utilities and<br>Descrij<br>Add records from                                                                                                                                                                        | nal use<br>ost purposes<br>easy depending<br>Commands<br>ption<br>n file2 to end o                                                                                  |
| 1 = clearly un<br>4 = good eno<br>7 = excellent,<br>on the ca<br>Summary of FI<br>Command Name<br>APPEND<br>APPLY1                                       | nacceptable for norr<br>ugh to serve for mor<br>, powerful, or very<br>tegory<br>Table IV<br>MS-80 Utilities and<br>Descrip<br>Add records from<br>file1.<br>Validate transact                                                                                                                                         | nal use<br>ost purposes<br>easy depending<br>Commands<br>ption<br>n file2 to end out<br>tions, apply to<br>ed batch com-                                            |
| 1 = clearly un<br>4 = good eno<br>7 = excellent,<br>on the ca<br>Summary of FI<br>Command Name<br>APPEND<br>APPLY1<br>BATCH                              | hacceptable for norr<br>ugh to serve for mor-<br>ugh to serve for mor-<br>powerful, or very<br>tegory<br>Table IV<br>MS-80 Utilities and<br>Descrip<br>Add records from<br>file1.<br>Validate transact<br>master file.<br>Execute predefin<br>mand file. (FMS                                                          | nal use<br>ost purposes<br>easy depending<br>Commands<br>ption<br>n file2 to end or<br>tions, apply to<br>ed batch com-<br>or CP/M com-                             |
| 1 = clearly ur<br>4 = good eno<br>7 = excellent,<br>on the ca                                                                                            | hacceptable for norr<br>nugh to serve for more<br>powerful, or very<br>tegory<br>Table IV<br>MS-80 Utilities and<br>Descrip<br>Add records from<br>file1.<br>Validate transact<br>master file.<br>Execute predefin<br>mand file. (FMS<br>mands)<br>Print a control                                                     | nal use<br>ost purposes<br>easy depending<br>Commands<br>ption<br>n file2 to end or<br>tions, apply to<br>ed batch com-<br>or CP/M com-                             |
| 1 = clearly un<br>4 = good eno<br>7 = excellent,<br>on the ca<br>Summary of FI<br>Command Name<br>APPEND<br>APPLY1<br>BATCH<br>CPRINT                    | nacceptable for norr<br>nugh to serve for more<br>powerful, or very<br>tegory<br>Table IV<br>MS-80 Utilities and<br>Descrip<br>Add records from<br>file1.<br>Validate transact<br>master file.<br>Execute predefin<br>mand file. (FMS<br>mands)<br>Print a control<br>definition).                                     | nal use<br>ost purposes<br>easy depending<br>Commands<br>ption<br>n file2 to end or<br>tions, apply to<br>ed batch com-<br>or CP/M com-                             |
| 1 = clearly un<br>4 = good eno<br>7 = excellent,<br>on the ca<br>Summary of FI<br>Command Name<br>APPEND<br>APPLY1<br>BATCH<br>CPRINT<br>DATE<br>DEFSORT | nacceptable for norr<br>nugh to serve for more<br>powerful, or very<br>tegory<br>Table IV<br>MS-80 Utilities and<br>Descrip<br>Add records from<br>file1.<br>Validate transact<br>master file.<br>Execute predefin<br>mand file. (FMS<br>mands)<br>Print a control<br>definition).<br>Set system date.                 | nal use<br>ost purposes<br>easy depending<br>Commands<br>ption<br>n file2 to end or<br>tions, apply to<br>ed batch com-<br>or CP/M com-<br>definition (key          |
| 1 = clearly un<br>4 = good eno<br>7 = excellent,<br>on the ca<br>Summary of FI<br>Command Name<br>APPEND<br>APPLY1<br>BATCH<br>CPRINT<br>DATE            | nacceptable for norr<br>nugh to serve for more<br>powerful, or very<br>tegory<br>Table IV<br>MS-80 Utilities and<br>Descrip<br>Add records from<br>file1.<br>Validate transact<br>master file.<br>Execute predefin<br>mand file. (FMS<br>mands)<br>Print a control<br>definition).<br>Set system date.<br>Define keys. | nal use<br>ost purposes<br>easy depending<br>Commands<br>ption<br>n file2 to end or<br>tions, apply to<br>ed batch com-<br>or CP/M com-<br>definition (key<br>gram. |

 Table IV

 Summary of FMS-80 Utilities and Commands

| Command Name | Description                                                                                                                                                               |  |  |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| EDITMD       | Invoke menu definitions editor.                                                                                                                                           |  |  |
| EDITRD       | Invoke report definitions editor.                                                                                                                                         |  |  |
| EDITSD       | Invoke screen definitions editor.                                                                                                                                         |  |  |
| FMS          | Execute Shell-80, and enter into<br>the FMS application develop-<br>ment environment.                                                                                     |  |  |
| GLOSSARY     | Print a file definition.                                                                                                                                                  |  |  |
| HELP         | Display a text file, indexing it by keyword.                                                                                                                              |  |  |
| HITCOUNT     | Count records in a file meeting selection criteria.                                                                                                                       |  |  |
| INDEX        | Build an index for random access of a file.                                                                                                                               |  |  |
| MENU         | Execute a custom menu.                                                                                                                                                    |  |  |
| MDPRINT      | Print a menu definition.                                                                                                                                                  |  |  |
| PREPARE      | Compile an EFM program. Op-<br>tions can be specified to list the<br>entire program and send the list-<br>ing or errors to the printer or a<br>file.                      |  |  |
| PRINT        | Print a file (or selected records<br>from a file) in a "quick and dirty"<br>format. Not pretty, but you car<br>see your fields without setting up<br>a report definition. |  |  |
| QUERY        | An interactive facility for quick<br>retrieval and update of records.<br>No paper trail of changes, and no<br>updating of indexes.                                        |  |  |
| REPORT       | Execute a report definition.                                                                                                                                              |  |  |
| RDPRINT      | Print a report definition.                                                                                                                                                |  |  |
| SELECT       | Create a selection definition<br>which defines criteria for choos-<br>ing records from a file. Selections<br>can be used by PRINT, REPORT,<br>SUBFILE, SORT, or APPLY1.   |  |  |
| SORT         | Sort a file by specified keys.Sort<br>an index.                                                                                                                           |  |  |
| SPRINT       | Print a selection definition.                                                                                                                                             |  |  |
| SUBFILE      | Apply a selection definition, writing selected records to a new file.                                                                                                     |  |  |
| TRANSACT     | Interactively create transactions<br>for use by APPLY1: add, delete<br>change, and inquire.                                                                               |  |  |
| UTILITY      | Get a directory, rename files, and delete files                                                                                                                           |  |  |

#### Features

## AUTOLOAD For SB-80, CP/M-86 And CP/M-80 On The Osborne I Computer

Although the AUTOLOAD feature of CP/M-80 has been described in various computer/software publications, the second generation equivalent 8080/Z80 CPU operating system, SB-80 from Lifeboat Associates, has this capability – as does Digital Research's CP/M-86 operating system (for the 8086 CPU); this facility loads and executes a user-specified program. Here are instructions on implementing the AUTOLOAD facility on either operating system, using Ward Christensen's DU (Disk Utility, version 7.5 from CPMUG Volume 68 or version 7.7 from CP/M-Net). I've also included a trick for the Osborne I computer CP/M-80 implementation, to AUTOLOAD/START programs in three different ways. Follow along closely, as I explain.

#### **AUTOLOAD For SB-80**

SB-80 requires the loading of the system Command Line Interpreter file SYSTEM.CLI (the .CLI is that program portion of the operating system that handles keyboard input from the user) at "cold boot" time. Lifeboat suggests that the .CLI be the first file on the diskette, to decrease the load time required (about 3 seconds, on flexible disk). So, we know that it must start on Group 2.

As a precaution, make sure that you are working with 'backup' copies of your diskettes. If you are not careful, it's possible to 'patch' your disks into 'disk heaven', never to be heard from again! Here we go; those < cr >'s shown below are your keyboard return key:

A>du<cr> <-- run Ward's Disk Utility

DISK UTILITY ver 7.7 Universal Version

Type ? for help <-- enter ?<cr> if you have never used DU! Type X to exit

:g0;d<cr> <-- goto Group 0, and Dump it...(for the non-believers) G=00:00, T=2, S=1, PS=1 00 005555 545454D20 20434C49 00004020 \*.SYSTEM CLI..0 \* 10 02030405 00000000 00000000 00000000 \*......\*

- as promised, Group 2 allocation!

#### SYSTEM.CLI, that we patch for AUTOLOAD

|     |           | - goto Gro |          | Dump it   |          |
|-----|-----------|------------|----------|-----------|----------|
| G=Ø | 2:00, T=2 | , S=17, PS | =2Ø      |           |          |
| ØØ  | C378B7C3  | 93B77FØØ   | 00000000 | 00000000  | *Cx7C.7* |
| 10  | 00000000  | 00000000   | 00000000 | 00000000  | **       |
| 20  | 00000000  | 00000000   | 00000000 | 00000000  | **       |
| 3Ø  | 00000000  | 00000000   | 00000000 | 00000000  | **       |
| 40  | 00000000  | 00000000   | 00000000 | 00000000  | **       |
| 5Ø  | 00000000  | 00000000   | 00000000 | 00000000  | **       |
| 6Ø  | 00000000  | 00000000   | 00000000 | 000000000 | **       |
| 7Ø  | 00000000  | 00000000   | 00000000 | 00000000  | **       |
|     |           |            |          |           |          |

Ah Hah! Has a very familiar look to it...the same old jump vectors, keyboard string length byte, and then nulls as CP/M-80 has. Let's set-up to AUTOLOAD SB-80's extended Directory display program (XD.COM), and see what happens:

Kelly Smith

:ca07,<2>XD<cr> <-- Change to ASCII, address 07, using hex entry <00><00><00><00> of <2> for string length, and filename XD :W<cr> <-- write it to diskette...

| :D< | cr> <- Du | mp it jus | t to be su | are (DU ne | ver fails though!) |  |
|-----|-----------|-----------|------------|------------|--------------------|--|
| ØØ  | C378B7C3  | 93B77FØ2  | 58440000   | 000000000  | *Cx7C.7XD*         |  |
| 10  | 00000000  | 00000000  | 00000000   | 00000000   | **                 |  |
| 2Ø  | 00000000  | 000000000 | 000000000  | 00000000   | **                 |  |
| 3Ø  | 00000000  | 00000000  | 00000000   | 00000000   | **                 |  |
| 4Ø  | 00000000  | 00000000  | 00000000   | 000000000  | **                 |  |
| 5Ø  | 00000000  | 00000000  | 00000000   | 00000000   | **                 |  |
| 6Ø  | 00000000  | 00000000  |            | 00000000   | **                 |  |
| 7Ø  | 00000000  | 00000000  | 00000000   | 00000000   | **                 |  |

:X<cr> <-- eXit DU, and return to SB-80

A>; now 'cold boot' SB-80, and it will ...

Directory on drive B

| SYSTEM   | CLI   | 321 | CLI     | HEX | 851 | DOS  | HEX | 1061 | DUMP | COM | 12  |
|----------|-------|-----|---------|-----|-----|------|-----|------|------|-----|-----|
| LIST     | COM   | 121 | PIP     | COM | 471 | SB8Ø | COM | 681  | STAT | COM | 128 |
| STAT     | COM+1 | 41  | XD      | COM | 131 | XDF  | COM | 101  | XDS  | COM | 71  |
| COPY     | COM   | 121 | XDIR    | COM | 16  | ASM  | COM | 641  | ED   | COM | 52  |
| SID      | COM   | 881 | SUBMIT  | COM | 101 | XSUB | COM | 61   | DU   | COM | 48  |
| COPYFAST | COM   | 161 | FINDBAD | COM | 13  | CRCK | COM | 101  | WASH | COM | 27  |
| SYSGEN   | COM   | 81  |         |     |     |      |     |      |      |     |     |
|          |       |     |         |     |     |      |     |      |      |     |     |

25 dir entries ---- 120k bytes used, 121k bytes remaining

A>; it "autoloaded" XD just fine!

#### AUTOLOAD For CP/M-86

CP/M-86 also has a 'patchable' file for AUTOLOAD; but in this case, it's the entire operating system CCP (Console Command Processor), BDOS (Basic Disk Operating System) and the BIOS (Basic Input/Output System) which are loaded by a special "cold boot" loader. OK, so let's go hunting again, in this case for the CPM.SYS file, but first:

A>pip a:=b:cpm.sys[v]<cr> <-- get CPM.SYS file from CP/M-86 disk

*Note*: DU.COM only runs on 8080/Z80 operating systems (until I whip out XLT86 on it), so put the CPM.SYS file on a diskette in your SB-80 or CP/M-80 system.

A>du<cr> <--- use Ward's DU to 'patch' the CPM.SYS file DISK UTILITY ver 7.7 Universal Version

Type ? for help Type X to exit

:= SYS<cr> <-- find ASCII 'space', 'space', 'SYS'

*Note*: Since we put CPM.SYS on this disk using whatever "free space" was available, we can't predict (as we did with SB-80) what the group allocation numbers will be. So, we will let DU find it for us, using DU's '=' command to search for a text string in the directory.

= AT 6C <-- last address in search string '  $\rm SYS',$  is at '6C Hex' G=0001:0C, T=2, S=29, PS=28

| :d< | cr> < du | ump the gr | oup alloca | ation info | for CPM.SYS        |
|-----|----------|------------|------------|------------|--------------------|
| ØØ  | E5434241 | 53383620   | 2Ø4C4F47   | 00000009   | *eCBAS86 LOG*      |
| 10  | CFØ10000 | 00000000   | 00000000   | 00000000   | *0*                |
| 20  | 00434150 | 54555245   | 2Ø434F4D   | 00000006   | *.CAPTURE COM*     |
| 3Ø  | E2010000 | 00000000   | 00000000   | 00000000   | *b*                |
| 40  | ØØ435Ø4D | 2D535953   | 20415554   | 00000015   | *.CPM-SYS AUT*     |
| 5Ø  | E301E401 | 00000000   | 00000000   | 00000000   | *c.d*              |
| 6Ø  | ØØ435Ø4D | 20202020   | 20535953   | 00000075   | *.CPM SYSu*        |
| 70  | E5Ø1E6Ø1 | E9Ø1EAØ1   | EBØ1ECØ1   | EDØ1EEØ1   | *e.f.i.j.k.l.m.n.* |
|     |          |            |            |            |                    |

it's in Group 1E5! (this is a 5 Megabyte Hard Disk) (continued next page)

Lifelines/The Software Magazine, Volume III, Number 1

|           |                                                                        |          | , then dum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | np it to console                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------|------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1E5:00, T | =116, S=9,                                                             | PS=8     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Ø1AØØ34Ø  | ØØAØØ3ØØ                                                               | 00000000 | 00000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *@*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 00000000  | 00000000                                                               | 00000000 | 00000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 00000000  | 00000000                                                               | 00000000 | 00000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 00000000  | 00000000                                                               | 00000000 | 00000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 00000000  | 00000000                                                               | 00000000 | 00000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 00000000  | 00000000                                                               | 00000000 | 00000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 00000000  | 00000000                                                               | 00000000 | 00000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 00000000  | 00000000                                                               | 00000000 | 00000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|           | 1125:00, T<br>01A00340<br>00000000<br>00000000<br>00000000<br>00000000 |          | 1125:00, T=116, S=9, PS=8           01A00340 00A00300         00000000           00000000 00000000         00000000           00000000 00000000         00000000           00000000 00000000         00000000           00000000 00000000         00000000           00000000 00000000         00000000           00000000 00000000         00000000           00000000 00000000         00000000           00000000 00000000         00000000           00000000 00000000         00000000           00000000 00000000         000000000           00000000 00000000         000000000 | 01.000.340         00.000         00000000         00000000         00000000         00000000         00000000         00000000         00000000         00000000         00000000         00000000         00000000         00000000         00000000         00000000         00000000         00000000         00000000         00000000         00000000         00000000         00000000         00000000         00000000         00000000         000000000         00000000         000000000         000000000         000000000         000000000         000000000         000000000         000000000         000000000         000000000         000000000         000000000         000000000         000000000         000000000         000000000         000000000         000000000         000000000         000000000         000000000         000000000         000000000         000000000         000000000         000000000         000000000         000000000         000000000         000000000         000000000         000000000         000000000         000000000         000000000         000000000         000000000         000000000         000000000         000000000         000000000         000000000         000000000         000000000         000000000         000000000         000000000         0000000000         000000000         < |

Hmmm...loader information because CPM.SYS is a "REL" file, let's try the next logical sector in the CPM.SYS file:

| :+;0 | d <cr> &lt;</cr> | advance +  | 1 to the m | next logic | al sector, and dump it |  |
|------|------------------|------------|------------|------------|------------------------|--|
| G=Ø. |                  | =116, S=10 |            |            |                        |  |
| ØØ   | E92AØ3E9         | 21Ø3E9Ø2   | Ø37FØØ2Ø   | 20202020   | *i*.i!.i *             |  |
| 10   | 20202020         | 20202020   | 20202043   | 4F5Ø5952   | * COPYR*               |  |
| 20   | 49474854         | 20284329   | 2Ø313938   | 302C2044   | *IGHT (C) 1980, D*     |  |
| 3Ø   | 49474954         | 414C2Ø52   | 45534541   | 52434820   | *IGITAL RESEARCH *     |  |
| 40   | 20000000         | 00000000   | 00000000   | 00000000   | **                     |  |
| 50   | 00000000         | 00000000   | 00000000   | 00000000   | **                     |  |
| 60   | 00000000         | 00000000   | 00000000   | 00000000   | **                     |  |
| 70   | 00000000         | 00000000   | 00000000   | 00000000   | **                     |  |
|      |                  |            |            |            |                        |  |

O.K., we found what we were looking for, three jump vectors this time (and yes, the CCP string length byte again). Let's AUTOLOAD XDIR, translated (8086'afied) from the 'Sorted Directory' utility SD.ASM (CPMUG volume 65) just last week! Note, that a number of utilities being translated to run in the CP/M-86 environment (FINDBAD, FILE-EXT, MUCHTEXT, etc.) are available from the CP/M-Net<sup>TM</sup>System via modem, at (805) 527-9321 (as well as from other RCPM's).

:caa,<4>XDIR<0><cr> <-- change ASCII, starting at address 'A', to: <00> 4 (hex entry), XDIR (ASCII entry, 0 (hex entry)

Note that you *must place a '0' byte* after your filename text string, as a terminator to indicate 'end of command string' to either CP/M-86's CCP or SB-80's .CLI. I didn't bother in the SB-80 example, because it's already zeroed out for us.

| :d< | cr> < di | mp the se |          |          | t it's correct     |
|-----|----------|-----------|----------|----------|--------------------|
| ØØ  | E92AØ3E9 | 21Ø3E9Ø2  | Ø37FØ458 | 44495200 | *i*.i!.iXDIR.*     |
| 10  | 20202020 | 20202020  | 20202043 | 4F5Ø5952 | * COPYR*           |
| 20  | 49474854 | 20284329  | 20313938 | 3Ø2C2Ø44 | *IGHT (C) 1980, D* |
| 3Ø  | 49474954 | 414C2Ø52  | 45534541 | 52434820 | *IGITAL RESEARCH * |
| 40  | 20000000 | 00000000  | 00000000 | 00000000 | **                 |
| 5Ø  | 00000000 | 00000000  | 00000000 | 00000000 | **                 |
| 6Ø  | 00000000 | 00000000  | 00000000 | 00000000 | **                 |
| 7Ø  | 00000000 | 00000000  | 00000000 | 00000000 | **                 |
|     |          |           |          |          |                    |

:w<cr> <-- write it back to disk ...

If you like, you can insert a command string clear to the end of the sector (but not beyond!), for some really complicated purposes like assembly invocations with various 'switch' parameters. This is true for either CP/M-86 or SB-80; just don't 'patch' into the next sector, as there is executable code there! Let's see, where were we?

:x<cr> <-- exit DU, and return to CP/M-80...

A>era b:cpm.sys<cr> <-- erase the "old" CPM.SYS A>pip b:=cpm.sys<cr> <-- back to whence we came...

Note again, that the 'CPM.SYS' file should also be the first file on your CP/M-86 just as 'SYSTEM.CLI' was for SB/80, and for the same reason!

#### AUTOLOAD For CP/M-80 On The Osborne I

Here is a handy little assembly language programming trick, to force your Osborne I computer to execute the AUTO-LOAD/START function (in this case, built into the CP/M-80 operating system and the Osborne I BIOS), in three different ways.

Edit, assemble, and load the simple program described below with ED, ASM, and LOAD provided on your CP/M-80 utility diskette (make sure that you name it AUTOST.ASM, when you edit it!). Then press RESET on the front of your Osborne I computer, to AUTOLOAD/START in one of three ways described in the following sections.

#### Osborne I - AUTOSTART '0'

If the label 'auto' is equated (see the assembly language program that follows) to a value of '0', your Osborne I will signon by first clearing the screen, and then it will display the message:

Osborne Computer System 60K CP/M 2.2A

and then display the CP/M operating system 'A>', waiting for your command input from the keyboard.

#### Osborne I - AUTOSTART '1'

If 'auto' has a value of '1', it will 'loop' continuously; that's because it has nothing better to do! But, if you include a 'special application' (written in assembly language) just before the 'jmp base', every RESET or 'warm boot' with keyboard CTRL-C (CTRL and C pressed simultaneously) will cause your application program to run again (and again, and...).

#### Osborne I - AUTOSTART '2'

If 'auto' has a value of '2', no auto start will occur, and the system will immediately execute the CP/M-80 operating system, displaying only the 'A>' prompt...nice, if you are tired of waiting out the lengthy sign-on with the 'standard auto start' provided by Osborne Computer Corporation.

Also, I want to point out that 'patching' any BIOS or portions of an operating system "on-the-fly" is undesirable from the standpoint of future system integrity. Any changes or enhancements (always meaning 'bug fixes') performed by the supplier of your operating system or BIOS may cause displacements of the code area that your 'patch' program previously modified correctly, with *unpredictable* results (always meaning 'a feature' if it can't be fixed); this happens because your little 'trick' is now modifying something else in the new code, and has the wrong address locations for that portion of the code that you really wanted to 'patch'! Here is the assembly language 'patch' (now if I only practiced what I preach!):

; base of CP/M system memory

auto start vector offset

WARNING: this value may have to change on any new releases of the BIOS or CP/M

Ø = Osborne sign-on message
1 = load AUTOST.COM on 'cold/warm boot'
2 = load AUTOST.COM on 'cold boot' only

note: when using value 1, AUTOST.COM will
 'loop' continuously unless it is
 linked to load an additional file
 BEFORE the 'jmp base'

base+1 ; get 'warm boot' vector address to jump table

m,autost; force to auto start control value
; <-- insert additional code here, if using</pre>

a value of 1 for auto start ; do 'warm boot'

; get auto start vector offset ; make vector address pointer

auto start control value, where:

Auto Start Patch Program for Osborne I Computer ----

100h

244h

ø

Ø

d,auto

d

base

**KIBITS** 

org

equ

equ

lhld

lxi

dad

mvi

jmp

end

base

auto

autost equ


#### Applications For AUTOLOAD

Tired of the kids playing that all-time favorite game 'ERA \* .\*' on your games diskette? Well, just AUTOLOAD your favorite flavor of BASIC and the game they want to play - the little monsters will never see the 'A>' system prompt.

Do you need some special system hardware initialization to occur (perhaps for printer port set-up) at 'cold-boot' without adding it to your BIOS? AUTOLOAD whatever special setup you require!

Want to have a customized sign-on for each disk in your library, to clearly identify its usage? AUTOLOAD is a message output routine that tells you what the disk is for!

The possibilities are endless ... if you think of something clever, write Lifelines/The Software Magazine, and share your ideas with us!



Lifelines/The Software Magazine, Volume III, Number 1

#### Features

## SMARTERM Inverse Video In CP/M-80 For The Apple

Without discussing the relative merits of one 80-column card for the Apple or another, let's address the user with an Apple, a SMARTERM 80-column card and the Microsoft Z80 SoftCard. After all, an 80-column card really enhances Apple Pascal; and once you have the card, adding the SoftCard is a very inexpensive way to discover whether there is anything to what your S-100 friends have been preaching – as they take turns playing their favorite games on your Apple!

Under CP/M, the SMARTERM is capable of performing all required functions except inverse video. Since the limitation is not in the hardware, it seemed necessary only to "write some software" to fill in the missing inverse function. This turned out to be easier said than done: the SMARTERM manual, which is excellent in describing SMARTERM's features, does not indicate how it works. The results of many hours with a disassembly listing are the I/O port definitions in Table 1. The addresses assume the SMARTERM is in slot 3 and being addressed by the 6502. To the Z80, the 6502 location \$C0B0 is OEOBOH.

#### Table 1

#### SMARTERM I/O Ports

- \$C0B1 Set 80 column GRAPHICS mode
- \$C0B5 Screen read latch
- \$C0B6 6545 register request
- \$C0B7 Switch to 80 column display
- \$C0BA- Screen write latch
- \$C0BE 6545 register write
- \$C0BF Switch to 40 column display

Once the details of the SMARTERM operation were known, it was simply a matter of following the Microsoft I/O Configuration instructions in chapter 2 for non-standard peripherals. The I/O driver listed below was typed into the source file SMARTERM.ASM with ED and then assembled and loaded with the ASM and LOAD commands. The CONFIGIO program which makes the patch permanent was RUN from MBASIC and it presented a menu of five choices. First enter a "3" to "Load User I/O Driver Software" and enter "SMARTERM" when the prompt "Source File Name?" appears. Respond "Y" to the "WARNING: A patch has already been made" prompt – there is an undocumented patch already in the space reserved for patches to the CON-SOLE device. The main menu is now shown again. Select item "4" to "Read/ Write I/O Configuration Block" and answer "W" to the "Read or Write" prompt. The main menu is displayed one last time – enter "Q" to return to MBASIC and "SYSTEM" to return to CP/M.

If you have already installed a custom I/O driver with CONFIGIO for some other device, it may be necessary to first read the I/O Configuration Block with menu item 4. The read or write Configuration Block reads or writes the entire block – that is, all the custom I/O drivers at one time. If one of those drivers uses self-modifying code, as this one does, the copy in memory may not be in the same form as the "boot" copy on the disk.

The various parts of the program listing are explained as follows. The EQUates at the beginning of the listing define the location of the SMARTERM or CP/M fields to be referenced. The constants before label CONSOLE are used by the CONFIGIO program to install the driver. The code between CONSOLE and ISALS checks to be sure there is a SMARTERM card in slot 3 and just continues to the "standard" CONSOLE routine if no SMARTERM is found. The standard CONSOLE routine switches from Z80 to 6502 control and calls the SMARTERM firmware to process the byte.

The code between ISALS and INVFLAG checks the byte to be processed for the set normal and set inverse codes. These codes can be changed by the user, in the CONFIGIO program, to any unused control character that does not have a lead-in. If the byte to be processed is one of these two, the code branches to either RSETIT or SETIT to

#### Lou P. Rivas

change the instruction at INVFLAG. Note that the commented Z80 JR instructions, which ASM will not assemble, are "hand-coded" by the use of the DB. If the output byte is not a set inverse code, processing will continue at INVFLAG. If the byte is not to be in inverse, INVFLAG will be a JMP to the standard CONSOLE routine in CP/M. If the byte is to be in inverse, INVFLAG is a LXI instruction to load the address of the standard CONSOLE routine into register H.

The code between INVFLAG and GOCPM ensures that the card is in the normal output state. The code between GOCPM and NOTCNTL ensures that the character is not a control. If either of these is false, the character is sent to the standard CONSOLE routine. Finally, the code after NOTCNTL and before RSETIT "pokes" the inverse character into the video memory then sends a "forward cursor" command to the SMARTERM to advance the cursor to the next display location.

This routine was developed using CP/M 2.20B and version 1.1 of the SMARTERM firmware.

#### Renew

If your subscription began last July, we're expecting to hear from you very soon. If you don't take time to renew now you'll miss some vital information — software is developing more rapidly than ever, and you will face some important decisions about operating systems, the new fourth generation software, telecommunications programs and other new products on the market.

So fill out that renewal form and questionnaire you've received in the mail. Send your check right away. Or you can get out your VISA or MasterCard and call *Lifelines/The Software Magazine* Subscription Dept. at (212) 722-1700. The address is: 1651 Third Ave., New York, N.Y. 10028.

Lifelines/The Software Magazine, June 1982

|         |          |                    |                                 |            | CMP   | Н                 |                                 |
|---------|----------|--------------------|---------------------------------|------------|-------|-------------------|---------------------------------|
| SMARTE  | ERM. ASM | - Patch to TTY: f  | or ALS normal/inverse display   | ;          | JR    |                   | ; BIF SET NORMAL                |
|         |          |                    |                                 |            | DB    | 28H,SETIT-1-\$    |                                 |
| WRITTE  | EN BY L  | OU P. RIVAS, DECEN | IBER 1981                       |            | CMP   | L                 |                                 |
|         |          |                    |                                 | ;          | JR    | Z,RSETIT          | ; BIF SET INVERSE               |
|         |          |                    |                                 | -          | DB    | 28H,RSETIT-1-\$   |                                 |
| RIGIN   | EOU      | ØF3ØØH             |                                 | INVFLAG    | TMP   | ØØØØ              | ; TO CP/M OR "LXI H"            |
|         |          |                    |                                 | OLDITY     |       | \$-2              | , to or, it on the in           |
|         | ORG      | ØØ1ØØH             |                                 |            | -20   | + -               |                                 |
|         |          |                    |                                 |            | LDA   | ALSTATE           | ; LOAD SMARTERM STATUS          |
| )FF\$   | SET      | ORIGIN-CONSOLE     | ; FAKE-OUT CONSTANT             |            | ORA   | A                 | ; CHECK FOR STATE Ø             |
| 100 C   |          |                    |                                 | ;          | JR    | Z,GOCPM+1         | ; TO CP/M IF IN MULTI-BYTE SEO. |
| R6545   | EQU      | ØEØB6H             | ; 6545 REGISTER REQUEST ADDRESS | inter auch | DB    | 28H,GOCPM+1-1-\$  |                                 |
| RMCARD  | EOU      | ØE3ØBH             | ; FIRMWARE CARD SIGNATURE       | GOCPM      | PCHL  | 2011/00011112 2 4 | ; TO CP/M                       |
| LSCARD  | EOU      | ØE3ØCH             | ; SMARTERM CARD SIGNATURE       |            |       |                   | 1 10 01/11                      |
| SLOT3   | EQU      | ØF3BBH             | ; SLOT 3 CARD TYPE BUFFER       |            | MVI   | А, 80Н            |                                 |
| SETNORM | EOU      | ØF3A6H             | ; HARDWARE SCREEN FUNCTION      |            | ORA   |                   | ; OUTPUT WITH HOB ON            |
| SETINVR |          | ØF3A7H             | ; TABLE INTENSITY ENTRIES       |            | CPI   | ' '+8ØH           | , contor with hob on            |
| VICODES | -        | Ø21C3H             | ; VALUES FOR INVERSE/NORMAL     |            | JR    |                   | ; TO CP/M IF CONTROL CHAR.      |
| LSTATE  |          | ØF77BH             | ; SMARTERM STATUS BYTE          |            | DB    | 38H,GOCPM+100H-   |                                 |
|         | DB       | 1                  | ; ONE PATCH                     | NOTCNTL    | STA   | R6545+4           | ; DATA TO OUTPUT LATCH          |
|         | DW       | ORIGIN             |                                 |            | STA   | R6545+8           | ; AND 6545 DUMMY REGISTER       |
|         | DW       | LENGTH             |                                 |            | PUSH  |                   | ; SAVE CP/M DRIVER ADDRESS      |
|         |          |                    |                                 |            | LXI   | H,R6545           | ; 6545 REQUEST REGISTER         |
|         | DB       | 2                  | ; PATCH TYPE 2                  |            | MVI   |                   | ; REQUEST R31                   |
|         | DB       | 4                  |                                 | STATUS     | MOV   |                   | ; GET STATUS                    |
|         | DW       | OLDTTY+OFF\$       | ; OLD VECTOR GOES HERE          |            | ANI   | 8ØH               | ; AND ISOLATE UPDATE STROBE     |
|         | DW       | CONSOLE+OFF\$      | ; THIS IS NEW VECTOR            | ;          | JR    | Z, STATUS         | ; BIF NOT UPDATED YET           |
|         |          |                    |                                 | ,          | DB    | 28H,STATUS+100H-  |                                 |
| CONSOLE | LDA      | FRMCARD            | ; FIRMWARE CARD SIGNATURE       |            | POP   | H                 | ; RESTORE CP/M DRIVER ADDRESS   |
|         | MOV      | D,A                |                                 |            | MVI   | C, 1CH            | ; FORWARD CURSOR CONTROL CHAR.  |
|         | LDA      | ALSCARD            | ; SMARTERM CARD SIGNATURE       |            | PCHL  | -,                | ; GO TO CP/M DRIVER             |
|         | ORA      | D                  | ; Ø1 OR 81 IFF ALS CARD         |            |       |                   | , SO TO CE/M DATVER             |
|         | CPI      | 81H                | ,                               | RSETIT     | MOV   | D,E               | ; INVFLAG <- "LXI H"            |
|         | JR       | NZ, INVFLAG        | ; BIF NOT ALS CARD              | SETIT      | MOV   | A,D               | ; INVFLAG <- "JMP"              |
|         | DB       | 20H, INVFLAG-1-\$  |                                 |            | STA   | INVFLAG+OFF\$     | , THAT FUR /- OND               |
|         |          |                    |                                 |            | RET   | THAT POLICY       |                                 |
| SALS    | MOV      | A,C                | ; COPY OUTPUT BYTE              |            | TUD I |                   |                                 |
|         |          |                    | / COLL COLLOR MARK              |            |       |                   |                                 |

## Software Notes

## **Tips & Techniques**

Michael J. Karas sent in this tip on high speed cursor address conversion.

Many currently popular CRT terminals on the market use a new type of cursor addressing that is ANSII compatible. Typical terminals include DEC VT-100, Callan Data Systems CD-100, and Televideo 950. The direct cursor addressing scheme utilized is quite a departure from the old standard method used by the ADM-3A, BEEHIVE 100, or TVI-912. The "normal" old way to position the cursor was to send a sequence to the terminal like:

#### ESC,Y,row,col

where the row and column are characters that correspond to specific columns and rows of the CRT screen. Typically the sequence "ESC,Y,space,space" caused cursor position to the home (0,0) screen position. Row and column positions for other areas of the screen corresponded to ASCII characters in the ASCII collating sequence starting at the space code (020H).

The new ANSII compatible format varies slightly from terminal to terminal but as an example consider the CD-100 unit. Here the cursor is positioned with the sequence:

#### ESC,[,rr,;,cc,H

In this case "rr" and "cc" represent the row number and column number in ASCII numeral characters. For example to speak of row 13 then "rr" consists of the ASCII characters "1" followed by "3" (or in hexadecimal 031H followed by 033H). The short program given below is an example 8080 assembly language routine that converts a binary number pair in the (HL) registers of col/row into the required ASCII sequence to position the cursor on a VT-100 or CD-100 type terminal. An inline coding scheme is used to transmit the fixed character portions of the sequence. A zero byte indicates "end of sequence". This was done to permit the same subroutine to be used to transmit other code sequences to the terminal for clear screen, delete line, etc.

```
;
;CURSOR POSITION TO (ROW=L) AND (COL=H) LIKE MICROPRO'S WORDMASTER
;
```

(continued next page)

| URADDR       | :                                                             |                                                       |                                                           |
|--------------|---------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------|
|              | PUSH<br>CALL<br>DB                                            | H<br>SEQOUT<br>1BH,'[',Ø                              | ;SAVE ROW COL CODE<br>;SEND INITIAL ESC,[                 |
|              | POP<br>MOV                                                    | H<br>B,L                                              | ;GET ROW CODE                                             |
|              | PUSH<br>CALL<br>CALL                                          | H<br>BINASC<br>SEQOUT                                 | ;SEND AS ASCII 2 CHAR NUMERALS<br>;SEND ROW/COL SEPARATOR |
|              | DB<br>POP<br>MOV                                              | ';',Ø<br>H<br>B,H                                     | ;GET COL CODE                                             |
|              | CALL<br>CALL<br>DB<br>RET                                     | BINASC<br>SEQOUT<br>'H',Ø                             | ;SEND AS ASCII 2 CHAR NUMERALS<br>;SEND TRAILER CHARACTER |
| SEND IN      | NLINE BY                                                      | TE SEQUENCI                                           | E TO THE CONSOLE TERMINAL                                 |
| ;<br>SEQOUT: | VMIII                                                         |                                                       | CET CEOUENCE DOINTED                                      |
| SEQOT1:      | XTHL                                                          | A,M                                                   | ;GET SEQUENCE POINTER                                     |
|              | MOV<br>INX<br>ORA<br>JZ                                       | H<br>A<br>SEQXIT                                      | ;IF ZERO THEN SEQUENCE IS<br>;DONE                        |
|              | PUSH<br>CALL<br>POP<br>JMP                                    | H<br>CHAROUT<br>H<br>SEQOT1                           | ;SEND CHARACTER TO CRT                                    |
| SEQXIT:      | XTHL<br>RET                                                   |                                                       | ;SET STACK RETURN AFTER<br>;SEQUENCE                      |
| SENT TO      |                                                               | NUMBER IN<br>E TERMINAL                               | (B) TO TWO ASCII NUMERALS                                 |
| BINASC:      | XRA<br>INR                                                    | A<br>B                                                | ;INITIALIZE ØØ BCD NUMBER                                 |
| BINAS1:      | INR<br>DAA                                                    | A                                                     | ;LOOP TO CONVERT BINARY TO<br>;TWO DIGIT BCD              |
|              | DCR<br>JNZ<br>PUSH<br>RAR<br>RAR<br>RAR                       | B<br>BINAS1<br>PSW                                    | ;SEND THE MOST SIGNIFICANT<br>;BCD DIGIT AS ASCII CHAR    |
|              | RAR<br>ANI<br>ADI<br>CALL<br>POP<br>ANI<br>ADI<br>CALL<br>RET | ØFH<br>'Ø'<br>CHAROUT<br>PSW<br>ØFH<br>'Ø'<br>CHAROUT | ;SEND THE LEAST SIGNIFICANT<br>;BCD DIGIT AS ASCII CHAR   |
| ;<br>CHAROUT |                                                               |                                                       | E TO TRANSMIT CODE TO THE                                 |

22

;

END =

#### Features

## Criteria For Evaluating Application Development Software

Last month I introduced some application development concepts and a menu system to help organize development of application software in the dBASE II system.

These ideas are part of a new generation of software emerging in the market. Such products are generally referred to as fourth generation software. Many products in this generation are not complete application development systems, but instead are elements of a diverse set of tools which help with some part of the development process. (Editor's Note: Lifelines/The Software Magazine intends to review more software in this fourth generation.) In order to put these products into perspective and provide some grounds for comparison of diverse packages, I will describe some criteria which will relate the review subjects to the application development process.

Prior to this fourth generation, computer software evolved through three stages of development. The first stage dealt with the computer on the bits and bytes level of each particular machine. The second generation was formed by the use of symbolic references to machine operations and addresses in assembler languages. The third generation of software emerged as an attempt to provide some machine independence for software with languages like FOR-TRAN and PL/I and with operating system environments.

This third generation of software is still very volatile, however. Many computer applications have dynamic and changing structures and others are so complex that it is difficult to design them completely without prototyping models of the system first. Using third generation languages makes both of these situations expensive. Third generation languages leave a large gap between the logical structures used in the final programs and the structures manipulated by the languages. Systems created with these languages thus have a wide variety of underlying structures. It is only in the last few years that computer professionals have begun to examine this area of diverse structures and have begun to put some order to it.<sup>3</sup>

Fourth generation languages and development systems more strenuously address the logical structures which allow software development to be tailored closely to a specific application's problems. Because the real world incorporates a wide range of possible computer applications, a system structured to serve some applications well might not fit other applications at all. So we expect fourth generation software to be restricted to smaller domains of use than third generation languages are, implying that there will be even more fourth generation languages than there are third generation languages.

The advantages we gain by restricting this domain of use for development systems are faster and cheaper development, implementation by users expert in the area of interest but with little or no experience as programmers, a prototyping capacity which can reduce study and analysis costs, and decentralization of data processing to put computation power where it is needed.<sup>5</sup>

Some of the types of structures which provide this higher level of treatment in development of software are aggregate data structures along with associated aggregate operators, implicit control structures which allow specification of what is to be done without concern for how it is done, and associative referencing of information and structures.<sup>4</sup> An aggregate data structure is any data structure which can be treated as a single unit but which might actually be composed of several dissimilar smaller structures. Aggregate operators are operators which can perform the same operations on these structures regardless of the actual composition of the structures. Implicit control structures are facilities providing the how so that functions can be performed when they are specified in a form describing only

#### **Steve Patchen**

*what* is to be done. Associative referencing uses some form of an expression which depicts what is referred to without regard for how it is to be found. These high level structures thus relieve the user or developer from dealing with those details not logically related to the problem he or she is dealing with.

An example of an aggregate structure could be an invoice data structure. An invoice is composed of several logical groups of data: there is information about the customer to whom the invoice is issued; there is information about the shipping of the products invoiced; there are descriptions of the products and prices, and there is billing information about taxes, total due etc. An example of an aggregate operator might be "DISPLAY INVOICE FOR INVOICE NUMBER = '820412'". This operation would find and display an invoice identified by the specified number. This operation could be used interactively or it might be imbedded in a program. As part of a program the actual invoice number would have to be retrieved from some other source for each use of the statement. The DIS-PLAY operator is also an implicit control structure because it takes actions based upon assumptions or stored knowledge about the entities specified. Associative referencing is used by this statement because it refers to the invoice by specifying a value one of its data sub-structures must contain.

This expression seems like a natural way to request an operation of the computer because it talks in terms which are related to the problem being worked on and because it uses natural language-like phrasing. However, if we examine this example more closely, we must realize that the computer could not do anything without knowing what an INVOICE or an INVOICE NUMBER was. It must thus be either pre-programmed to recognize these terms or it must have knowledge of these terms, and implicit control structures to make decisions based upon the knowledge it has.

(continued next page)

These two possibilities reveal two different approaches to fourth generation software. The first is called very high level language (VHLL) and the second is called knowledge-based generation (KBG).4 VHLL's are usually evolved from third generation languages like FORTRAN while KBG's derive their experience from artificial intelligence and languages like LISP. There is another technique for program generation called the build program technique.6 It uses third generation languages and program templates to build programs from information converted by a specification language into a form which can be substituted into the templates. The pieces are then put together and form programs. This type of application generation is the most restrictive because it depends upon the templates being appropriate to the functions they are required for, meaning they are usually developed to fit a narrow range of needs. An absolute necessity for this type of system is the ability to extend the development facilities by adding more templates and incorporating code created the old way.

Extensibility and the ability to link to program structures written in another language are actually very important requirements of any fourth generation development system. Even more versatile systems can box the user into a corner during development, because of some unplanned-for feature, or one outside the scope of the development system yet within the scope of the application.

In addition to changing the level between the machine and the application at which the designer must work, there is an increasing concern for the interaction between the immediate user and the computer. This applies to both the designer of systems and the end user. So this interface must address the psychological effects of the system on users and designers. And it must cope with the efficiency of tasks the user or designer employs to accomplish his goals. Every computer system still has to deal with the four interfaces: the machine, the machine independent environment, the application and the user. First and second generation software had to handle all the details of all four of these interfaces for each application. Third generation systems relieved the user to some degree of the machine environment problems, but the user still must

deal with the other environments on a low level.

Table R5 covers several important questions for each of these four views of computer software. Evaluation of software which participates in the development process should be reviewed by examining it in light of these questions. The table groups the questions under the four interfaces which tie the computing environment together. Some of these questions involve the relationship of two or more of these interfaces and imply a test on the modularity and cohesion of the different subsystems of the computing environment. I will discuss them below.

#### **Application Suitability**

The only thing which should be visible during application specification is the application, and the entities which are logically a part of it. The first question in this section asks how easy it is to fit the application to the computing system in a logical manner – without the distraction of unrelated details. Question two asks how completely the development system can specify the logical requirements of the application problem.

Both of these questions imply the need for good modular separation between the specification and implementation parts of the development system; they also imply that the specification model must be able to depict the desired behavior of the implemented system in terms of functional responses to various stimuli.

Question three can be satisfied by an operational specification system which allows a "walk-through" of the specification, or permits interactive implementation and testing of incomplete parts of the system. The specification must be insensitive to incompleteness. Question four also requests dynamic structures which allow reworking and extension of the specification.<sup>1</sup>

#### **Implementation Concerns**

The need for optimization is most apparent at the implementation interface. The machine environment limitations have to be handled at this level so that unrelated ramifications are not reflected at the application level. It is this interface which must distribute the resources of the computer to the requirements of the application. How the limitations and constraints of the machine are reflected in the application must be clearly visible. The second question about this part of the environment deals with the tools used not only for the actual implementation, but also for optimizing the machine's use and dealing with extensions of the implementation environment.

It is at this level that we are most concerned about how the reviewed product relates to the operating system and what form data structures and operations have.

#### Needs Of The User And Designer

When a system is designed, the user's needs have typically been given low priority, despite pretenses to the contrary. This has made the data processing center a frequent battleground; order is imposed upon data processing by brute force. As in most wars, the pressures feeding the turmoil are economic ones. However, we are beginning to understand the data processing environment a little better and it is possible to make convincing economic arguments for considering the psychological part of the environment. The three questions in this section deal with only some of the obvious points revealed so far. These questions should be asked for both the development part of the system and the use of the final products.7

#### The Computer Machine

Computer system capacities are frequently exceeded many times over the life of the system. This means that the machine environment must be extended during the use and development of applications and that it is desirable to do so without a great deal of disruption to the operating environment. The questions in this section are concerned with the visibility of machine limitations and the ability of the system to adjust to machine expansions. Portability of the system to another machine is also an important concern, so that the user is not constrained by the current machine's expansion limits.

Lifelines/The Software Magazine, June 1982

#### **Application Structure**

In addition to these four logical divisions of the data processing environment, there are identifiable functional segments of the application system. In general, a business application involves data entry, data management and reports or other output. There is more than one possible level of complexity for each of these parts. That is, data entry may involve simple appending of new records to a file structure or it may involve entry into a set of interrelated transactions. Data management may be simple file management or it may involve a complete database management system. Reports can vary from simple listings of files to complex derivations from large databases. Within the reporting and data management systems there can also be simple or complex algorithms or functions to perform transformations upon data.

There already exists a variety of both manual and automated techniques to assist in the development of various parts of the application. Individual programs are assisted by decision tables, flowcharts and function libraries. Report design is enhanced by output-input matrices, data dictionaries and data flow diagrams. Database management system data design can utilize data dictionaries and automated data design systems. Transaction processing is implemented with the aid of HIPO diagrams, data dictionaries and data flow diagrams. There are also manual design techniques for completely integrated business systems; they usually boast such names as structured analysis<sup>2</sup> and structured design.<sup>9</sup> Software packages which attempt to do everything are usually called 'applications generators', 'parameterized application packages', or 'application development systems'.

Many of these development systems provide good facilities for part of the application, but are weak in dealing with other elements.<sup>8</sup> The usefulness of any tool is dependent upon its ability to handle the particular problem at hand. Therefore, if the systems available are biased, a system slanted towards the application must be chosen. If a combination of tools is required because an adequate complete system is not available, the compatibility of the various tools on hand must be considered. Many tools only attempt to extend the

use of third generation languages by simplifying some frequently-performed task or by the creation of some frequently-used structure. This approach to creating a fourth generation development environment is a "bottom up" evolution of tools. It must be examined from a "top down" perspective to keep the development process requirements in view. Many of these extensions improve programmer performance, but do not provide any enhancements to the application specification part of the system. Some development tools may not differentiate between any of the four interfaces with which they deal. It is important to note these variations, because they can affect the flexibility and usefulness of the tool in question.

Table R6 attempts to provide a more complete picture of the development system from the viewpoint of the application structures. It allows the reviewer to plot the completeness and complexity for each part of the functional divisions of the business application. A facility is considered to exist if it is possible to specify what is desired without writing code in a procedural language. If a procedural language is provided as an integral part of the development system, and its language features reflect the structures used by the system, the reviewer might consider the system capable of complex systems; however, it is not easily capable of them.

#### Summary

Important questions must be asked by anyone who wishes to use data processing for business needs. What are the requirements of the application I wish to implement and how do I satisfy these requirements? A review of any software which participates in the development process must attempt to provide the reader with ways to answer these questions. Many purchasers of development software will have little or no experience with business system development. They need to be informed of the tools they will need and the preparations they will have to make before attempting any such task. Product manuals seldom make any attempt to orient the system user to the development process. They do not inform the user what other resources and techniques will be needed in addition to those provided by the system. The

reviewer can help the software buyer by putting a product into perspective and relating it to other products on the market. The reviewer must identify the range of applications for which the product is suited, as well as those for which it is not suited.

1) Balzer, R.B. and Goldman, N. "Principles of good software specification and their implications for specification languages", AFIPS Conference Proceedings Vol. 50 1981, NCC, AFIPS Press, Arlington, Virginia 1981, pp. 393-400

2) DeMarco, Tom, Structured Analysis and System Specification, Yourdon Inc. New York, 1978

3) Dolotte, T.A., Bernstein, M.I., Dickson Jr., R.S., France, N.A., Roseblatt, B.A., Smith, D.M., Data Processing In 1980-1985; A study of Potential Limitations to Progress, John Wiley & Sons, New York 1976

4) Hammer, M. and Ruth, G., "Automating the Software Development Process", Research Directions in Software Technology, The MIT Press Cambridge, Mass. 1979, pp. 767-792

5) Martin, James, Application Development Without Programmers, Prentice-Hall, Englewood Cliffs, N.J. 1982

6) Rice, John G., Build Program Technique: A Practical Approach for the Development of Automatic Software Generation Systems, John Wiley & Sons, New York 1981

7) Shneiderman, Ben, Software Psychology: Human Factors in Computer and Information Systems, Winthrop Pub., Cambridge 1980

8) Whitney, V.K. and Morse, J.G., "Choosing application development tools and techniques", AFIPS Conference Proceedings Vol. 50 1981, NCC, AFIPS Press, Arlington, Virginia 1981

9) Yourdon, E. and Constantine, L.L., Structured Design, Yourdon, Inc., New York 1975

#### TABLE R5 Application Generation Systems

#### I. APPLICATION SUITABILITY:

- 1. Does the method required for specifying applications reflect an understandable and logical model of the domain of applications for which it is intended?
- 2. Can the application be completely specified?
- 3. Is the implemented system testable against the specification for the system or vice versa?
- 4. Does the development system make it easy to extend and rework the specification and implementation?

## II. IMPLEMENTATION SUITABILITY

- 1. Are the restraints and limitations of the implementation environment made clear to the designer?
- 2. Is the set of tools for doing system implementation complete or are other independent tools required?
- 3. Is the implementation environment extensible to include new components or components from other systems?

#### III. USER/DESIGNER SUITABILITY

- 1. Are the user interfaces developed by the system and those used to develop the application understandable in terms of the tasks to be performed or do unrelated details obscure the operation?
- 2. Does the user get a feeling of having complete control of the system or do obtuse messages and unexplained operations leave him in confusion or frustration?
- 3. Does the system seem to have been designed with psychological criteria for short term memory, closure of tasks, response time and user control in mind?

#### IV. MACHINE SUITABILITY

- 1. Are limitations imposed by the machine environment understandable in terms of application limitations and are application requirements translatable to machine requirements?
- 2. Are any provisions made in the development system to allow optimization in different machine environments?
- 3. Is it possible to extend the machine environment without major changes to applications already implemented?

#### TABLE R6 Application Development Facilities

| Functional                           | Completeness and Complexity of Facilities |      |                       |                   |  |
|--------------------------------------|-------------------------------------------|------|-----------------------|-------------------|--|
| Parts                                | Little<br>or None                         | Some | Complete<br>& Complex | Easily<br>Complex |  |
| Individual<br>Program<br>Development |                                           |      |                       |                   |  |
| Input<br>Transactions                |                                           |      |                       |                   |  |
| Data<br>Management                   |                                           |      |                       |                   |  |
| Reports and<br>Queries               |                                           |      |                       |                   |  |
| Integrated<br>Systems                |                                           |      |                       |                   |  |

## **Software Notes** For COBOL 80 Users

The following are the current CRT DRIVER modules for COBOL-80.

| CODOL-00.      | 지방 때에 가지 않는 것 같은 것 같은 것 같은 것 같이 많이 |
|----------------|------------------------------------------------------------------------|
| CDADDS.MAC     | ADDS REGENT TERMINALS                                                  |
| CDADM3.MAC     | LEAR-SIEGLER ADM-3A TERMINALS                                          |
|                | LIFEBOAT CP/M (prior to 2.25) for                                      |
|                | TRS80 II COMPUTERS                                                     |
| CDADM21 MAC    | LEAR-SIEGLER ADM-31 TERMINALS                                          |
| CDADIVBI.IVIAC | LIFEBOAT CP/M for DATAPOINT                                            |
|                |                                                                        |
|                | COMPUTERS                                                              |
| "              | LIFEBOAT CP/M 2.25+ for TRS-80 II                                      |
|                | COMPUTERS*                                                             |
| CDANSI.MAC     | ANSI STANDARD TERMINALS                                                |
| CDBEE.MAC      | BEEHIVE and CROMEMCO                                                   |
| CDDLL.IIIIIC   | TERMINALS                                                              |
| CDHZ15.MAC     | HAZELTINE 1500 TERMINALS and                                           |
| CDH215.WAC     | ARCHIVE COMPUTERS                                                      |
|                |                                                                        |
| CDISB.MAC      | INTERTEC SUPERBRAIN TERMINALS                                          |
|                | and COMPUTERS                                                          |
| CDPERK.MAC     | PERKIN-ELMER TERMINALS                                                 |
| CDSROC.MAC     | SOROC IQ TERMINALS                                                     |
| CDWH19.MAC     | HEATH/ZENITH TERMINALS and                                             |
| CDWIII9.WAC    |                                                                        |
|                | COMPUTERS                                                              |
| CDZEPH.MAC     | ZENTEC ZEPHYR TERMINALS                                                |

\* Note: See also an article in the April '82 issue of 80 Microcomputing by James Korenthal for an alternate TRS-80 model II screen driver. It will only work with CP/M versions prior to 2.25, but includes information on how to turn the cursor on and off. It also includes some ideas on putting a bell up on the silent screen.

## Volume 81, Catalogue and Abstracts

## **CP/M Users Group**

#### Catalog

**DESCRIPTION**: CP/M Utility disk. Submit replacement, editor, text processor, hard disk backup utility, etc.

| NUMBER | SIZE | NAME                         | COMMENTS                                               |
|--------|------|------------------------------|--------------------------------------------------------|
|        | 3K   | -CATALOG.081<br>ABSTRACT.081 | Contents of Vol. 81<br>Abstract of files on volume 81. |
|        | JK   | ADJIRACI.001                 | Abstract of mes on volume of.                          |
| 81.1   | 10K  | AUTOLOAD.COM                 | Write initial CP/M command                             |
| 81.2   | 3K   | AUTOLOAD.DOC                 | into CCP on disk.                                      |
| 81.3   | 28K  | BACKUP.ASM                   | Back up hard disk to multiple                          |
| 81.4   | 7K   | BACKUP.DOC                   | floppy disks                                           |
| 81.5   | 7K   | BAUDSET.ASM                  | Set baud rate for                                      |
| 81.6   | 2K   | BAUDSET.DOC                  | serial board                                           |
| 81.7   | 25K  | EDITM.ASM                    | Update of CPMUG volume 16                              |
| 81.8   | 3K   | EDITM.COM                    | editor, with new                                       |
| 81.9   | 4K   | EDITM.DOC                    | features.                                              |
| 81.10  | 16K  | FLOPCOPY.ASM                 | Copy floppy via hard disk                              |
| 81.11  | 2K   | FLOPCOPY.DOC                 | when only 1 floppy drive                               |
| 81.12  | 42K  | POW2.ASM                     | "Processor of Words" - text                            |
| 81.13  | 5K   | POW2.COM                     | processing prog.                                       |
| 81.14  | 4K   | POW2.DOC                     | -                                                      |
| 81.15  | 23K  | POW2.MAN                     | Manual on above                                        |
| 81.16  | 2K   | POW2.TST                     | Test document                                          |
| 81.17  | 22K  | SUPERSUB.ASM                 | Super submit program,                                  |
| 81.18  | 3K   | SUPERSUB.COM                 | allowing nested submits,                               |
| 81.19  | 15K  | SUPERSUB.DOC                 | etc.                                                   |
|        | K    | FILES.CRC                    | CRC of files on this disk                              |
|        | 2K   | CRCK.COM                     | Produce CRC of files                                   |
|        | 5K   | U-G-FORM.LIB                 | CPMUG submission form                                  |
|        |      |                              |                                                        |

#### type on the printer, restricts the files it backs up (no .BAK, .SYM, etc.), and then does the actual backup. It reports what files are on each disk, etc. Very complete.

**BAUDSET.ASM**, **.DOC** is John M. Kodis' program to facilitate baud rate changing on a Cromemco Tu-Art board or a Micromation Doubler board. The program could be modified for other UARTs.

**CRCK.COM** is Keith Petersen's program – checks all files.

EDITM.ASM, .DOC, .COM is an update of CPMUG volume 16 editor, claimed to be faster than ED.COM, and has additional ability to write arbitrary lines to disk. Useful only if ED is your only editor, and you want a bit more.

FLOPCOPY.ASM, .DOC is Gary Young's program to copy a floppy disk, using a hard disk as intermediate storage. This would be used by someone with a hard disk, but only a single floppy, who wanted to copy a floppy.

POW2.ASM, .COM, .DOC, .MAN, .TST comprise a text formatter, "Processor Of Words". By Herman Watson, from Dr. Dobbs Journal No. 29, page 20. POW2 revised from CPMUG Volume 36 by William R. Brandoni. Enhancements: CP/M-80 base alterable for non-standard systems; new User's Manual; files bigger than memory; bug fixes; viewing the formatted output on a CRT terminal; :MD, :CD, and :CU commands are provided to double strike and underline. Uses C/R overprint technique.

SUPERSUB.ASM, .DOC, .COM is Ron Fowler's replacement for SUB-MIT. Allows SUB file nesting, and also an immediate mode where no SUB file need be edited first. Written up in January, '82 Lifelines/The Software M a g a z i n e.

#### Abstracts

AUTOLOAD.COM, .DOC is Willis Howard III's program to patch a command into CCP so it will be executed automatically when CP/M-80 boots. The command is patched directly to the CCP image on the boot tracks of your disk. Useful for auto-loading an MBASIC menu program for dedicated applications, or for loading a special driver, etc. Unless your BIOS is specifically modified to do so, the auto-command will execute on both cold and warm boot.

**BACKUP.ASM**, **.DOC** is Gary Young's very complete program for backing up a hard disk to multiple floppies. It prints a master directory by

## Software Notes

## Macros of the Month Edited by Michael Olfe

Apologies to those of you who experienced panic on not seeing "Macros Of The Month" in the last issue of *Lifelines/The Software Magazine*. Rumors of its death were slightly exaggerated.

The 8086/8088 version of PMATE has arrived in MS-DOS, PC-DOS, and CP/M-86 versions. All share some significant new features, listed below.

- 1-Disk buffering is greatly expanded. This results in faster operation and less disk access.
- 2-The terminal configuration files ("CNF" files) allow assignment of any key to any permanent macro. This had to be done in other versions of "PMATE" by modifying and assembling "IOPATCH.ASM".
- 3-Configuration options allow the editor to come up in Insert or Overtype mode automatically. Thus a "PMATE" can be configured to (a) come up with menus or operator prompts of an arbitrary and familiar kind, (b) process a file, and (c) exit – without ever entering command mode or requiring that the operator know anything about how to operate "PMATE" on the root level. OEMs take note.
- 4-New single-keystroke commands: Overwrite/Insert mode toggle key, erase line forward/back from cursor, page up and page down, cursor to beginning/end of line.

The PC version of PMATE is particularly interesting and has mated nicely with the IBM keyboard and screen. For example:

- 1-PMATE-PC senses the kind of display in the system and adapts itself automatically to either the monochrome or color display.
- 2-The PC version is optimized for the IBM PC screen and does not rely on IBM's built-in screen-handling routines. This editor is fast!
- 3-All the function keys are implemented as userdefined macros.
- 4-All the keys on the right keypad are implemented. Besides the four cursor motion keys, the assignments are: beginning/end of line (a toggle), forward/back one screen, delete line forward/back from the cursor.
- 5-This version takes advantage of the unique code pairs generated by each key on the IBM keyboard. Backspace and control-H do not necessarily have to perform the same function, nor do control-M and return. Each key on the keyboard has a unique code and can be assigned a unique function in PMATE.

PMATE PC takes advantage of this by configuring the keypad cursor motion keys for geometric cursor motion and the control-keys for line-oriented cursor motion. Both are simultaneously available – in other versions one has to make a choice.

The macros this month are designed to speed repetitive textprocessing tasks. One helps you edit a group of disk files quickly; one is designed to speed editing of cursor-adressing statements, and the last auto-loads macros into their execution buffers. These are by Andrew Hughes of Toronto, Canada.

Anybody who has had to make alterations on a group of files in one sitting has probably experienced the drudgery of loading them in one by one, having to repeatedly list their names to see which one is next. This happened to me, and I wrote a macro to do the job. Mr. Hughes wrote a much better one, which is this month's winner, listed below. The macro lists the file names for any drive on the screen and you merely position the cursor on the file name you want to edit. You can also specify the output file name, and it can be on a different drive. The macro loads the file and you proceed with the edit. When done, you can save the edited file and repeat the process. If the processing to be performed on all the files is identical, a macro can be called within a loop to do the work. You could also change this macro to do something to a whole group of (ambiguous filename) files without any operator intervention.

; Permanent macro called below to enter a string of characters

^Xi[gEnter: DEL : CR to end\$ @k=127 [-d^][@k=13[%]@ki]]

Permanent macro to load and process all items on a disc successively.

Authored by Andrew Hughes of Toronto, Ontario, Canada

;Uses buffer Ø permanently, to hold the directory, and variable Ø ;permanently, through the whole session. Variable Ø must be Ø ;before calling the macro. The first time use ØvØ.d\$\$ to call it, and thereafter, just .d\$\$.

; Uses buffer 1 during the macro.

| ^Xd be@Ø=Ø                                                              | ; on first using the macro, clear buffer Ø      |
|-------------------------------------------------------------------------|-------------------------------------------------|
| [                                                                       |                                                 |
| xklvØ                                                                   | ; and set variable Ø                            |
| gEnter input drive or CR\$<br>@k&" ="B [xsb]<br>@k&"=="C [xsb]<br>xl\$i | ; get directory from right drive (CR=A:)        |
| S                                                                       | ; end of initialization                         |
| \$<br>]                                                                 | ; end of initialization                         |
| lblm zblg                                                               | ; move NAME to buffer 1 and                     |
|                                                                         | ; to bottom of Directory list                   |
| blea ibtexkxf\$ z-dqr                                                   | ; prepare buffer 1 for execution                |
| gEnter output drive & name or                                           |                                                 |
|                                                                         |                                                 |
| @k=13[i \$@ki.i] .la                                                    | ; execute buffer 1                              |
|                                                                         | ; Here the processing program could be appended |
|                                                                         | ; or a macro could be called                    |

The second was written to help in editing dBASE II command files, but could be adapted for any language which includes cursor-positioning statements. It simply adds one to the number under the cursor. Suppose you have constructed a screen with cursor-positioning commands, and decide to add another line to the middle of the screen. Simply go down the list of commands invoking the macro on the command line. This saves much time. Note, however, that the macro can handle only two-digit numbers since the largest digit for cursor addressing on most terminals is 80.

The third allows you to construct auto-loading macros, i.e., macros which are loaded into the buffers for which they were written. All that is necessary is to write the macro with a header and trailer specifying its execution buffer, as in the macro below. The only restriction imposed is that the body of the macro cannot have the string ";@end" in it, and the header must precede any other similar string in the macro. The loader routine should be made into a permanent macro. This very convenient macro allows you to put up to nine macros in a library and load them automatically into their correct buffers.

; Macro to add a number to the ascii digit(s) under the cursor ; starting number must be stored in vØ

; @b=3 macro executes in any buffer -- 3 used here

@0=0{gYou must store starting count in value register 0 first\$%}

s@ \$ts,\$-m#d ; delete old x @Ø\vaØ1

Space to continue, any other character to quit \$ (@k<32 ! @k>32)

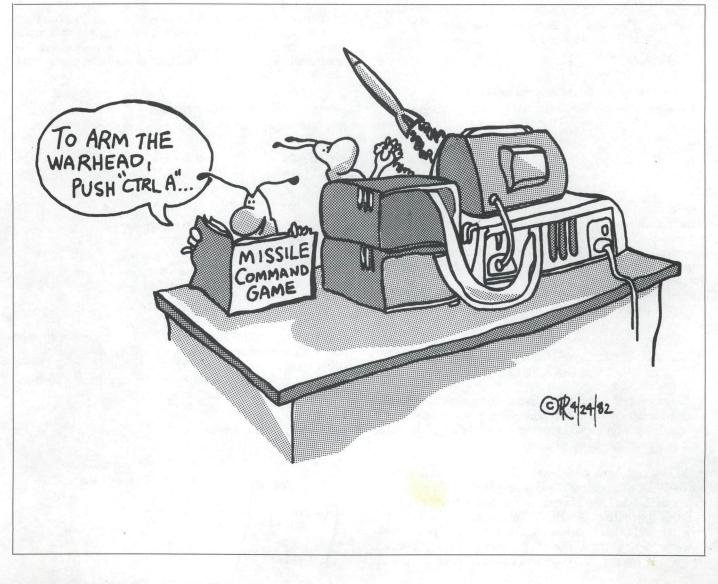
ØvØ ; @end

; Macro to auto-load macros

; loads a macro or group of macros into buffers specified by their headers format of header: @b=n, where  $n=\emptyset-8$ , and the first @b in the file is the "jump adress", or the buffer that will be executed

; the end of each macro group has the line ";@end"

gab9eztxiAa\$ #s;\$@e\_ -m s;\$s@b=\$@tvl# es;\$@e -m t s@b=\$ @tvØ s;@end\$ @Ø="Ø{#bm^}
@Ø="l{#blm^] @Ø="2{#b2m^ @Ø="3{#b3m^ @Ø="4{#b4m^ @Ø="5{#b5m^ @Ø="6{#b6m^ @Ø="7{#b7m^ @Ø="8{#b8m^] @l="Ø{.Ø\$^[^} @l="0{.0\$^^^} @l="1{.1\$^^^ @l="2{.2\$^[^} @l="3{.3\$^[^} @l="4{.4\$^^^ @l="5{.5\$^^^} @l="6{.6\$^[^} @l="7{.7\$^[^} @l="8{.8\$^[^}


; get the file named by caller into register 9 ; store the "jump adress"

; find beginning of header

- ; find beginning of neader ; store the buffer number ; find end of this macro ; kludge -- this version of pmate doesn't ; allow b@nm were @n is variable

; all moved

; now jump to first one



Lifelines/The Software Magazine, Volume III, Number 1

#### Features

## **8080 Assembler Programming Tutorial: Subroutines**

;

;

#### Ward Christensen

The 8080 instructions have been covered individually, and now it is time to put them to work as a team, doing useful work that no single instruction can perform. Initially I will avoid CP/M-80 specific routines, so that you will get some useful routines which apply to both CP/M-80 and non-CP/M-80 systems. There will be subroutines for data movement, arithmetic, logical, and input/output.

#### **Data Movement Subroutines**

A very simple move subroutine might be one that filled a block of memory with a single character, perhaps to blank out a buffer. Typically you know exactly how long the buffer is, so can simply decrement a count as you store the data. Here is such a subroutine:

;FILL: fills the buffer pointed to by HL, ;with spaces. The buffer length is in BC. ; FILL MVI M, ' ' ; store 1 space ;point to next byte INX Н ;decrement count DCX R

Note that although BC has been decremented, the 8080 does not set the PSW flag bits to indicate whether or not the result was zero, so it is necessary to test BC for zero. This is performed by ORing B with C. Only if both B and C are zero will the result be zero.

| MOV | A,B  | ;get B,                   |
|-----|------|---------------------------|
| ORA | С    | ;OR it with C             |
| JNZ | FILL | ;jmp if B or C isn't zero |
| RET |      | ;return, BC is now zero   |

A more common need is to move a string of data from one place to another. There are typically two ways to define a string: (1) by length and (2) by some special ending character such as a carriage return or a binary 0.

In the first case, where the length is known in advance, I will use the BC register pair to hold the length. HL will point to the source field, and DE will point to the destination field. I will call the subroutine "MOVE". To use it, I just load the registers, and call the subroutine. As an example, let's move a character string consisting of the words "Test message", which is 12 bytes long, to an area called BUFFER:

;move MESSAGE (12 long) to BUFFER

| LXI  | H, MESSAGE         | ;set "from" register                  |
|------|--------------------|---------------------------------------|
| LXI  | D,BUFFER           | ;set "to" register                    |
| LXI  | B,12               | ;set length                           |
| CALL | MOVE               | ;move the data                        |
|      |                    |                                       |
|      |                    |                                       |
|      |                    |                                       |
|      | LXI<br>LXI<br>CALL | LXI D,BUFFER<br>LXI B,12<br>CALL MOVE |

MESSAGE DB 'Test message'

I purposely set up the registers this way, so they'd be compatible with the Z80 single-instruction LDIR (load and increment), which allows the Z80 to perform the MOVE subroutine in a single, two byte instruction. But first, let's look at the 8080 MOVE subroutine:

| Deuti   |         |           | ing (non (1))             |
|---------|---------|-----------|---------------------------|
| ;ROUT I | ne to m | ove a smi | ing from (HL)             |
| ;       | to (DE  | ), length | n in BC                   |
| ;       |         |           |                           |
| MOVE    | MOV     | A,M       | ;Get source byte          |
|         | STAX    | D         | ;Store at destination     |
|         | INX     | Н         | ;Bump source pointer      |
|         | INX     | D         | ;Bump dest. pointer       |
|         | DCX     | В         | ;Decrement count          |
|         | MOV     | A,B       | ;Get B,                   |
|         | ORA     | С         | ; Or with C,              |
|         | JNZ     | MOVE      | ; loop if BC not yet zero |
|         | RET     |           | ;otherwise ret from MOVE  |
|         |         |           |                           |

Back to the Zilog Z80: Although I recommend using the above move routine in your programs (so they will run on either an 8080 or Z80), there may be people who are writing code strictly for their own use, and are confirmed Z80 users. They should simply code:

;Z80 specific move subroutine OEDH.OBOH : Z80 "LDIR" MOVE DB RET ;Return after executing If you had a Z80 assembler, you'd code: MOVE LDIR ; do the move RET ;Return after executing

Lifelines/The Software Magazine, June 1982

In either case, the "subroutine" is only a two byte instruction and a RET, so it typically would be coded inline rather than as a subroutine.

#### Variable Length Move

Some languages, notably the "C" programming language, use strings terminated by a special byte, rather than dealing with fixed-length strings. "C" uses a zero at the end of the string. A move routine to move such strings would be:

;variable length move subroutine.

;(HL) = input string, (DE) = output string. ;input string is terminated by byte of 00. The ;byte of 00 is copied to the output string

| ;     |      |       | and the second se |  |
|-------|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| MOVEZ | MOV  | A,M   | ;Get source byte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|       | STAX | D     | ;Store at destination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|       | INX  | Н     | ;Bump source pointer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|       | INX  | D     | ;Bump dest. pointer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|       | ORA  | А     | ; s (A) = zero?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|       | JNZ  | MOVEZ | ;No, loop until done.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|       | RET  |       | ; then return                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|       |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |

That's about all there is for data movement. I'll get into some specific uses for these subroutines later (for instance, for moving file names around in preparation for CP/M-80 file-related commands).

#### **Arithmetic Instructions**

You will typically be dealing with two kinds of arithmetic in 8080 assembly language: binary and ASCII. Since the 8080 only supports 8-bit arithmetic, and the 16-bit add instruction DAD, subroutines will have to be used for anything more.

Let's start with some basic binary arithmetic: ADD, SUB-TRACT, and NEGATE.

DAD D

will add the contents of DE to HL, leaving the result in HL.

#### **16-Bit Subtraction**

A subtraction is not quite as simple. It requires using an 8-bit subtract on the low bytes, then a subtract-with-borrow on the high bytes:

#### ;

; double subtract DE from HL

; DSI

| SUB | MOV | A,L | ;Get low byte of HL       |
|-----|-----|-----|---------------------------|
|     | SUB | Е   | ;Subtract low byte of DE  |
|     | MOV | L,A | ;Put answer back          |
|     | MOV | A,H | ;Get high byte of HL      |
|     | SBB | D   | ;Subtract high byte of DE |
|     |     |     | ; with BORROW             |
|     | MOV | H,A | ;Put answer back          |
|     | RET |     |                           |

**16-Bit Negate** 

The 8080 cannot negate a value directly. A "hack" technique for doing it on 8-bits would be to simply subtract the value from zero. Suppose the value in A was to be negated; A might contain a 3, and you might want the value -3:

| MOV | В,А | ;Save value in B |
|-----|-----|------------------|
| XRA | A   | ;Zero A          |
| SUB | В   | ;Subtract value  |
|     |     |                  |

(A) now contains the negative of what it originally had.

The 8080 contains a ones-complement instruction, CMA. Ones complement simply means flipping the value of each bit. In binary arithmetic, the term "twos complement" means the same as negative. Ones complement does not produce the negative of the original value, as you can see by the following example:

| A,1 | ;A=0000 | 0001                 |                                |
|-----|---------|----------------------|--------------------------------|
|     | ;A=1111 | 1110                 |                                |
| А   | ;A=1111 | 1111                 |                                |
| A   | ;A=0000 | 0000                 |                                |
|     | A       | ;A=1111<br>A ;A=1111 | ;A=1111 1110<br>A ;A=1111 1111 |

The point of this example is that *if* CMA did produce the negative of the 1 producing -1, then one INR A would have incremented it back to 0. Instead, two INR instructions were required. In general, to produce the negative of a number, a single INR A must follow the CMA. This yields a simple "negate" subroutine:

| NEGATE | OMA |   | ;Get ones complement  |
|--------|-----|---|-----------------------|
|        | INR | A | ;Make twos complement |
|        | RET |   | ; (negative)          |

This is not a likely candidate for an honest-to-goodness subroutine, since it is only three bytes, but would take a three byte call instruction to call it. *It* thus would be called "in line", i.e. by directly coding the instructions CMA and INR A.

A more suitable candidate for a subroutine would be a 16-bit complement. Because DAD adds to the HL register pair, HL may be considered to be a 16-bit accumulator, so typically a 16-bit complement subroutine would be expected to work on HL:

| ;      |         |     |      |             |
|--------|---------|-----|------|-------------|
| ;retur | n HL≕HL | 1.1 |      |             |
| ;      |         |     |      |             |
| NEGHL  | MOV     | A,H | ;com | plement     |
|        | CMA     |     | ;    | bits in     |
|        | MOV     | H,A | ;    | Н           |
|        | MOV     | A,L | ;the | 'n          |
|        | OMA     |     | ;    | in          |
|        | MOV     | L,A | ;    | L           |
|        | INX     | Н   | ;the | n make twos |
|        |         |     | ;    | complement  |
|        |         |     |      |             |

The first six instructions produced the ones complement of HL. The final INX then added one to the ones complement, producing a twos complement, or negative of the original (continued next page)

Lifelines/The Software Magazine, Volume III, Number 1

number. Note that the entire number was incremented (I used INX) and *not* just each 8-bit half of it (via INR).

#### **ASCII** Arithmetic

The most common forms of ASCII arithmetic encountered in assembly programming are:

1-counting in ASCII. 2-converting numbers from ASCII to binary 3-converting numbers from binary to ASCII

ASCII COUNTING: A typical use would be to count something, simply incrementing a value each time some condition is met. For example, an extended directory program may wish to count how many files it found. One means would be to maintain a binary count, then convert it to ASCII for printing. However, if you have no other need for such a conversion routine, I'm sure you'll find this simple ASCII increment routine more suitable:

First, let's define the message that is printed. I'll put a special character, '\$', at the end of the message:

| MESSAGE | DB | 'The | ere are '    |
|---------|----|------|--------------|
| COUNT   | DB | 1    | zero files\$ |

Now let's define a subroutine called "ADD1", which adds one to the count. To call the routine, point HL to the *low* byte of the ASCII number, and call ADD1. It does "pretty much what you'd expect"; it simply adds one to the digit, and if the sum is greater than nine, makes it a zero, and backs up one column, and increments it. But you might be surprised to note that it simply branches to itself to do the carry, and that a very simple instruction may be used to maintain the leading spaces on the number, so it prints " 3 files" instead of "0003 files":

;

;Add 1 to an ASCII number. HL points to the ;units digit of the number to be incremented.

```
;get digit
ADD1
       MOV
                A,M
                         ; change possible ' ' to 'zero'
                101
        ORI
                A
                         ;add 1 to it
        INR
                         ;save it back
        MOV
                M,A
                         ; is it 1 more than '9'?
        CPI
                191+1
       RNZ
                         ; no, just return
```

```
;got a carry
```

```
;
```

| MV I | M,'0' | ;set current digit to zero    |
|------|-------|-------------------------------|
| DCX  | н     | ;back up to next higher digit |
| JMP  | ADD1  | ;start all over               |

I think the ORI '0' is a "neat trick", to allow the leading spaces to be easily handled, without even explicitly looking for them. It works because the '0' is a 30H, or 0011 000 binary. Since a space is a 20H or 0010 0000, ORing in the 30H produces a 30H, or '0'. Similarly, if the number has been incremented, say, to 7, it is then 37H, or 0011 0111, and ORing it with 30H leaves it untouched.

ASCII TO BINARY CONVERSION: How would you convert a number from ASCII to binary? How does this sound?

Develop the answer by going a digit at a time, multiplying the previous result by 10 then adding in the next digit, repeating this until there are no more digits.

I qualify this subroutine by stating that it only handles positive numbers. A "-" sign will not be handled. I think with a little imagination, you could see how the start of the routine could test for a "-", and if there was one, remember to call the 16-bit negation routine discussed earlier.

The key part of this routine is the multiplying by ten. I mentioned this back in the "DAD TRICKS" part of the tutorial. It multiplied by 10 by simply using DAD D and DAD H. Here's the entire routine:

;ASCII to binary routine.

;(HL) points to ASCII input, terminated by any non-ASCII ;character. The delimiter character is returned in (A) ;if you want to check it. The binary answer is in HL. ;Registers BC, DE clobbered.

| ;       |      |        |                                         |
|---------|------|--------|-----------------------------------------|
| ASCIBIN | XCHG |        | ;move pointer to BC.                    |
|         | LXI  | Н,О    | ;Init answer                            |
| ASCBLP  | LDAX | D      | ;Get input character                    |
|         | INX  | D      | ;point to next                          |
|         | CPI  | '0'    | ; compare to character zero,            |
|         | RC   |        | ; and return if less                    |
|         | CPI  | '9'+1  | ; compare to 1 higher than '9           |
|         | RNC  |        | ; return if more or =                   |
|         | SUI  | '0'    | ;turn into binary                       |
|         | MOV  | B,H    | ;copy partial answer                    |
|         | MOV  | C,L    | ; to DE for x by 10                     |
|         | DAD  | Н      | ;HL = 2 x original number               |
|         | DAD  | Н      | ;HL = $4 \times \text{original number}$ |
|         | DAD  | В      | ;HL = $5 \times \text{original number}$ |
|         | DAD  | Н      | ;HL =10 x original number               |
|         | ADD  | L      | ;add current digit                      |
|         | MOV  | L,A    | ;put back answer                        |
|         | JMP  | ASCBLP | ;loop until done.                       |
|         |      |        |                                         |

Since this is the longest subroutine covered so far, let me go into detail on every instruction to make sure everyone follows. If you understand it without further explanation, skip to "BINARY TO ASCII CONVERSION".

"ASCIBIN" is the name of the subroutine: ASCII to BINARY.

The routine makes use of the DAD instruction, which always adds to HL. Therefore, I decided early on, to make HL free, and thus the XCHG instruction. It swaps the contents of DE and HL. I don't really care about the fact that it swaps, but merely want to move HL to DE. I could have done:

| PUSH | Н | ;One | way to | сору | DE | to | HL, |
|------|---|------|--------|------|----|----|-----|
| POP  | D | ;    | but    | slow |    |    |     |

and as a matter of fact, this is a very straightforward way to copy a register pair to another. I strongly dislike it for aesthetic purposes however, since it wastes time – stack instructions are always costly. A better way would be: MOV D,H ;a better way to copy MOV E,L ; DE to HL.

This takes two bytes of instructions, the same as the PUSH and POP, but since it uses no stack instructions, it executes much faster. However, if I didn't care about keeping the data in HL when moving it to DE, a simple:

XCHG

is the best solution, so that is what I used to place the pointer to the input data into DE.

The "answer" must be initialized. I have determined that the answer will be developed in HL, so decided to simply keep it there all along. I initialize it to zero by "LXI H,0", so that if no valid ASCII data is found, a zero is returned in HL.

"ASCBLP" is the label on the main processing loop of the subroutine.

"LDAX D" gets an ASCII character from memory, and "INX D" points to the next character.

The character must be between '0' and '9', to be a valid ASCII numeric digit. Using my old memory aid "C.A.L." (Carry if Accumulator is Lower), I test to see if the character loaded is less than a '0', by "CPI '0'. Since an ASCII '0' has a value of 30H, any character less than that, such as a carriage return (0DH) will cause carry to be set.

The "RC" returns if carry was set, as I have no more ASCII digits to process.

I get to the next instruction if the character was not less than '0'. I now want to test if it is between '0' and '9'. I *cannot* test it via "CPI '9'", because, from C.A.L. rule, carry will only be set if the answer is LESS THAN '9'. However, '9' itself is valid, so really, I want to know if less than or equal to '9'. I could:

| CPI | '9' | ; is it less than '9'? |
|-----|-----|------------------------|
| JC  | OK  | ; yes, it is OK        |
| RNZ |     | ;return if not = '9'   |
| 1   |     |                        |

OK:

Again, there is nothing wrong with programming like this – it is what you might directly translate from the thought "less than or equal to '9'". However, a little thinking will show you that if you do the CPI for the character which is one *more* than '9', then carry will be set for values *including* the '9'. You don't have to scurry to find out what character is one more than '9' (it is ':' just for the record). Instead, let the assembler do your work for you, by coding: "CPI '9'+1".

Since we have already returned for any character less than '0', a "RNC" will return if the character is not '0' – '9'.

At this point, the character is a digit from '0' to '9'. The first step in making the binary number is converting this single digit to binary, by a "SUI '0" instruction. You might see such an instruction commented as "subtract ASCII offset" or "subtract ASCII bias", meaning that the ASCII number for 0, i.e. '0', is 30H, and the offset from "true" zero is thus 30H or '0'.

Lifelines/The Software Magazine, Volume III, Number 1

Now comes the multiply by 10. Since the 8080 instructions can only add, and not truly multiply, it takes the right combination of adds to produce a multiply by 10. It will be necessary to add the number to itself (DAD H), and also to add the original number, after doing some DAD H instructions. Thus, I copy the partial answer from HL to BC, via "MOV B,H"and "MOV C,L".

Then, the sequence "DAD H", "DAD H", "DAD B", "DAD H" converts HL into 10 x HL.

Finally, the new digit is added. Ideally, the digit should be added to L, but since you can only add to the accumulator (or do 16-bit adds to HL), I add L to A instead, via "ADD L", then put L back via "MOV L, A".

Finally, the subroutine JMPs back to the top of the loop via "JMP ASCBLP".

**BINARY TO ASCII CONVERSION:** Since converting from ASCII to BINARY involved multiplication (by 10), it seems logical that conversion from BINARY to ASCII would involve division. This is true. However, just as the multiplication was really just some adds, the division will be some subtracts.

To simplify things, the output will not be leading-zero suppressed.

Again I'll show the routine, then discuss it in detail. The technique is to essentially divide the number by 10000, then store the quotient as the number of 10000's in the original number, then divide by 1000, then 100, then 10, and finally store the remainder. This will thus develop a 5-digit ASCII number.

;

;ASCII to binary conversion. HL = binary number, ;(DE) points to output buffer. Number treated as unsigned.

| ASCBIN | LXI  | B,-10000 | ; compute the ten- |
|--------|------|----------|--------------------|
|        | CALL | DECDIG   | ; thousands digit, |
|        | LXI  | B,-1000  | ;then the          |
|        | CALL | DECDIG   | ; thousands,       |
|        | LXI  | B,-100   |                    |
|        | CALL | DECDIG   | ;hundreds,         |
|        | LXI  | B,-10    |                    |
|        | CALL | DECDIG   | ;tens,             |
|        | MOV  | A,L      |                    |
|        | ORI  | '0'      |                    |
|        | STAX | D        | ;store final digit |
|        | INX  | D        | ;bump pointer,     |
|        | RET  |          | ; and return       |
|        |      |          |                    |

;

This subroutine divides HL by BC, returning the quotient in A, expressed as an ASCII digit. Only useful when the quotient is between zero and 9, as it would be in a binary to ASCII conversion routine.

| ;      |     |          |                           |
|--------|-----|----------|---------------------------|
| DECDIG | MVI | A, '0'-1 | ;init (see details below) |
| DECLP  | INR | А        | ;add 1 to quotient        |
|        | DAD | В        | ;"subtract"               |
|        |     |          | (continued next page)     |

| JC   | DECLP | ;loop if it fit |                       |  |
|------|-------|-----------------|-----------------------|--|
| STAX | D     | ;store          | output ASCII          |  |
| INX  | D     | ;point          | to next char position |  |
| MOV  | A,B   | ;compu-         | te the                |  |
| CMA  |       | ;               | negative              |  |
| MOV  | B,A   | ;               | of                    |  |
| MOV  | A,C   | ;               | the                   |  |
| CMA  |       | ;               | BC                    |  |
| MOV  | C,A   | ;               | register              |  |
| INX  | В     | ;               | pair                  |  |
| DAD  | В     | ;un-do          | last subtract         |  |
| RET  |       | ;               | and return            |  |
|      |       |                 |                       |  |

Here's a detailed explanation:

"ASCBIN" is the name of the subroutine. The first step is to compute how many 10,000's there are in the number and store that digit. "LXI B, -10000" and "CALL DECDIG" do this. See the details on DECDIG, below.

Repeat the above step for 1000, 100, then 10. Upon return from DECDIG at this time, the final digit, from zero to 9, is left in HL. Thus, "MOV A,L" gets the digit (in binary), "ORI '0" changes the binary to ASCII, "STAX D" stores it. The "INX D" is not really necessary, but in case the routine calling it wants to put something more into the buffer, it skips the last character stored.

The "DECDIG" subroutine divides HL by BC. Normally, this would be done by subtraction. It could be by a subroutine similar to DSUB show earlier, but since the number being subtracted is a constant, it is easier to "add a negative number" than to subtract a positive number.

Step one is to initialize the quotient. I could just initialize it to zero, then add one every time a subtract was successful. However, this would require some extra JMPS, such as:

|         | MV I | A,0    | ;init quotient  |
|---------|------|--------|-----------------|
| DECLP   | DAD  | В      | ;"subtract"     |
|         | JNC  | NOMORE |                 |
|         | INR  | A      | ;count quotient |
|         | JMP  | DECLP  |                 |
| NOMORE: |      |        |                 |

It would be much easier to put the INR A at the top of the loop, but then it would count one too many times. The simple solution is to initialize it to 0FFH, i.e. one less than zero:

|       | MV I | A, OFFH | ;init quotient         |
|-------|------|---------|------------------------|
| DECLP | INR  | A       | ;count quotient        |
|       | DAD  | В       | ;"subtract"            |
|       | JC   | DECLP   | ;loop if it subtracted |
|       |      |         |                        |
|       | 1.1  |         |                        |

This would then be followed by an "ADI '0", to make the binary value into an ASCII digit. However, it doesn't really matter where the '0' is added, so why not put it in the accumulator as part of the initialization. Thus, "MVI A, '0' -1" initializes the accumulator to the '0', but minus one, because of the INR at the top of the loop. Whew!

"DECLP" is the looping label for the subtract. "INR A" counts one quotient.

"DAD B" is the "subtract" itself. If the subtract was able to be made, it produces a carry. This is the opposite of addition, in which carry would indicate the sum was too large. Thus, "JC DECLP" loops as long as the subtract could "fit".

Then, "STAX D" stores the ASCII digit, and "INX D" bumps the pointer to be ready for the next digit.

Now the first problem. The most reasonable way to detect that you couldn't subtract any more, was finding carry no longer set. Trouble is, one of the negative divisors has been added. Since there is no double subtract, it is necessary to do a 16-bit subtract by complementing and adding.

To do the complement, it is the now-familiar "MOV A,B", "CMA", "MOV B,A", "MOV A,C", "CMA", "MOV C,A", and "INX B". That generates the 16-bit complement, then "DAD B" to un-do the last DAD, then "RET".

**COMING UP:** Next month, I'll present a continuation of the subroutines, showing a MOVE routine which will work fast on either 8080 or Z 80, because it detects which processor it is running under. I'll also get into Input/Output. Specifically, CP/M-80 character I/O.

Future installments will get into CP/M-80 disk I/O, both simple and buffered.

If you have any questions about how to accomplish a task in 8080 assembler, write to me C/O *Lifelines/The Software Magazine*, 1651 Third Ave., New York, N.Y. 10028. Please restrict your questions to those of a limited enough scope to be handled in a subroutine. Examples might be: "How do I convert from EBCDIC (the code used on virtually all IBM machines except the PC) to ASCII?". I will publish the question and an answer in future installments.

#### A Call For Manuscripts

Maybe you've written for publication before? Or maybe you've always wanted to write? It could be that reading *Lifelines/The Software Magazine* has given you some ideas on what you have to contribute. We're interested in hearing what you have learned, and so are other readers. If you've got experience using software that runs with CP/M-80, UNIX, CP/M-86, MS-DOS, XENIX, or UCSD Pascal we'd like to talk to you. We like to publish both longer essays and those short gems which can hold so much important information. We pay competitively and our current authors will tell you that writing for a magazine like ours is satisfying in many ways.

Send us a brief resume of your software experience, and samples of your previous writing, if you have any. (Don't be shy if you're **not** an experienced writer.) Then we can talk about your work and about payment for your efforts. Write or call: Editorial Dept., Lifelines Publishing Corp., 1651 Third Ave., New York, N.Y. 10028. Telephone: (212) 722-1700.

# Features

# MicroSpell, MicroProof, And SpellGuard

Before the widespread availability of microcomputers the word processing market was primarily the domain of minicomputers manufactured by such companies as IBM, Wang, and others. Now, although the minicomputers still hold their place in the market, there are a great many microcomputers dedicated, many on a part-time basis, to word processing. For those of us who are not the best of typists, there are a variety of word processing systems available, including a relatively recent development: proofreading programs to check your spelling.

The readers will recall the article by Robert Van Natta reviewing SpellStar (*Lifelines/The Software Magazine*, April 1982). I would like to compare SpellStar to MICROPROOF, Micro-Spell, and SpellGuard. SpellStar has been reviewed by Mr. Van Natta, so I will concentrate on the other three programs.

## SpellGuard

SpellGuard, by ISA (Innovative Software Applications) of Menlo Park, California, comes with a softback book of instructions as program documentation. This book gives the user a stepby-step introduction to SpellGuard's use, the help commands, setting up the normal default entries, etc. Appendices include usage tips, technical information, error messages and a glossary of terms. The documentation, in my opinion, is very well done, with many illustrations to guide the new user.

SpellGuard comes on a single diskette containing two .COM files: SP.COM (6K) and MAINTAIN.COM (13K) for spelling checks and dictionary maintenance, respectively. In addition, there is a 33K dictionary file, SP.DIC, and a 54K messages file SP.ISA. The only other file on the disk is LETTER.TXT (3K), a sample text letter for testing SpellGuard.

Running SpellGuard is simplicity itself. The program is self-prompting and guides the user by the hand through its entire operation. This makes it ideal for the "non-computerist" user, like the office secretary. The user is allowed to have multiple dictionaries for different purposes, such as correspondence, lab reports, etc. However, only one dictionary may be used at any one time. SpellGuard does not allow supplemental dictionaries in addition to the "regular" dictionary; this may or may not be a drawback, depending in your particular application. SpellGuard also lets you change its "default table" by using different files on disk for the default table; the table specifies the dictionary to use, among other things.

SpellGuard lets you maintain your dictionary using MAINTAIN.COM. SpellGuard's dictionary, as supplied, contains about 20,000 words. SP.COM allows you to add words to the dictionary as you do your proofreading. MAINTAIN permits you to copy dictionaries, and merge (or add), and subtract dictionaries from one another.

Overall, I'd say SpellGuard is wellsuited for use by non-computerists, especially office secretarial personnel.

# MicroProof

Microproof, by Cornucopia Software of Walnut Creek, California, will run only on a system equipped with a Z80 CPU. This may rule out MicroProof for some users.

MicroProof's documentation comes in a softbound notebook binder and gives the usual introduction, including a brief history of the development of MicroProof by Mr. Phil Manfield; then the manual gets into actual usage. The documentation is not quite as effective as SpellGuard's, but it is by no means difficult to follow. I had no problem whatsoever in understanding how to utilize MicroProof.

MicroProof can be configured to correct the errors after it proofs your document,

#### James K. Mills

or it can simply list the misspelled words to CRT or printer - then you search them out with your word processor. In the first case, you are prompted with the dubious word and given a choice of several responses: correct the misspelling, ignore the error, display the context, add the word to the dictionary, or quit the program. If you choose to add the word to the dictionary, you may also "code" the word as a verb, noun, adverb, or adjective. The manual also tells you not to enter a plural as an entry, but only the root word. Presumably, MicroProof will search for plurals of root words.

MicroProof is distributed on a single eight-inch diskette, containing several files: MICPROOF.COM (9K) is the proofreading program; CORRECT1.-COM (1K) and CORRECT2.COM (2K) are called automatically by the "correcting" version of MicroProof and used for correcting and adding to the dictionary; ADDTODIC.COM (6K) is used to add a list of words to the dictionary; PRINTDIC.COM (3K) is used to print and edit the dictionary, and TEST.COM does some magic to assure you that you have received a valid disk. The dictionary files are DICT1.DAT (34K) and DICT2.DAT (35K) which contain the 50,000 word dictionary. In addition, there is a DICT3.DAT (1K) which is used for storing words added to the dictionary. Finally, there is a sample text file, EX-AMPLE (2K). The manual makes reference to some other files that may be on certain diskettes, such as M.COM, an intermediate program to link Micro-Proof with word processors other than WordStar. There may also be a patch program for similar purposes. One thing that did impress me about Micro-Proof's manual is that numerous instructions are given for customizing MicroProof to your disk system, whether it be five-inch or eight-inch, or TRS80, etc.

Like most such programs, MicroProof prompts for the input it wants and guides you through its operation. It is (continued next page) not as wordy as SpellGuard, but it does nicely.

Overall, I'd say that MicroProof seems to be a well-conceived system, and the user should have little trouble with it.

## MicroSpell

MicroSpell, by Bob Lucas (distributed by Lifeboat Associates), comes with its documentation in a three-ring binder; it is 37 pages in length as opposed to MicroProof's 30 pages and Spell-Guard's 116 pages (116 is not a typo). MicroSpell has more options and variables than the other two programs, which makes it both more versatile and more difficult to learn to use. While the manual isn't as wordy as SpellGuard's, it does cover the various aspects of using MicroSpell concisely, and should be read, and even re-read from time to time, so the user can become familiar with all the options available.

MicroSpell is distributed on two eightinch diskettes. The first disk contains most of the programs and files used with MicroSpell:

 BUILD
 .COM
 (13K)
 used to build LEX files

 CUSTOM
 .COM
 (13K)
 customize to your syst.

 EMPTY
 .COM
 (2K)
 create an empty file

 INVERT
 .COM
 (9K)
 dumps the LEX files

 SPELL
 .COM
 (16K)
 proofing program

 UNBUILD
 .COM
 (11K)
 removes words from LEX files

LEX.1 (34K) dictionary file (letters. A-D) LEX.2 (32K) dictionary file (letters E-L) LEX.3 (33K) dictionary file (letters M-R) LEX.4 (32K) dictionary file (letters S-Z)

In addition to the above, there are some help files, and a demo file. On the second distribution diskette are the following vocabulary files:

ED .VOC (29K) EXTRA.VOC (35K) ING .VOC (20K) RARE .VOC (41K)

By using BUILD and UNBUILD, the user can add to or delete from the dictionary the lists of words contained in the four vocabulary files. The ED, ING, and RARE files are additional words to be added to the dictionary if you have enough memory to support the bigger dictionary segments. The EXTRA file is a list of words you can delete from the dictionary if you are limited by memory size and cannot run the SPELL program as provided.

MicroSpell does the proofreading in four passes, one pass for each dictionary file. Options upon invoking Micro-Spell allow you to skip any or all of the first three passes, suppress creation of the "exception" (bad word) file, suppress context display for bad words, accept all uppercase words, suppress creating the output file (dry run), send words to the exception file, suppress the suffix guessing routines, suppress creation of backup file, accept "RUN-OFF" type mnemonics, mark unfamiliar words in the output, and more. MicroSpell also lets you suppress printing the plurals that MicroSpell accepts, but it is fun to watch the way MicroSpell's algorithms work on plurals. And you will find that occasionally the words that MicroSpell accepts as plurals and suffixes are not correct - the English language not always being logical.

In addition to all of this, there is a learn mode (very helpful in view of the complexity) to help you become familiar with MicroSpell. Like most of the programs reviewed here, MicroSpell also has an appendix with a table of commands and options (also called INFO.HLP on disk).

Whew! That's a mouthful, but maybe it will give you an idea of the flexibility of MicroSpell as compared to other programs.

When actually doing the proofreading, errors are reported to the user, who is then allowed to correct the error, add new words to the dictionary, display the context (automatic unless suppressed by user), quit, and probe the dictionary for more words (i.e., look for CR??TE, where the ?? are wildcards). But here's MicroSpell's big feature: MicroSpell "guesses" what it thinks the misspelled word should be by looking (automatically or by command) for similar words in its dictionary. Typically, MicroSpell will come up with one to four guesses for misspelled words. Each guess is numbered, and all you have to do is select that number to replace the word in the file with that guess. This is actually quite helpful, and makes using MicroSpell quite entertaining. Watching it make guesses for your bad words and watching it find root words that match words with (sometimes) complex suffixes is quite interesting. And even though you may know the correct spelling of a misspelled word, you're saved the trouble of keying it in.

## **Opinions And Conclusions**

Well, it will probably come as no surprise to the reader that I, personally, like MicroSpell better than the others. It is like comparing a text editor to a word processor - there are similarities. but you can do so much more with the more complex program that gives you more options. (I once swore foolishly that I'd never use WordStar, I was happy with my copy of WordMaster, but now I write these articles with WordStar!) The only item left open and uncovered is speed of execution. No one likes to wait all day for a program to finish. The table provided should give you all the data you need. Note that MicroProof is not specified - I am currently using an 8080 CPU, not the Z80 required for MicroProof. However, I am in the process of upgrading, and I plan to publish a followup article next month to indicate how all these programs do on a 4 MHz Z80. The system used for these comparisons (this month) is an 8080 running at 2 MHz with 64k of memory, and a Tarbell single density floppy disk controller. The file checked was this article (prior to any corrections).

#### **Final Conclusions**

The reader will have the best idea of what is best for his or her purposes. SpellGuard is well-suited for an office environment where speed is the primary factor, although you may encounter objections from personnel who have to "bypass" all the false errors (this is true of all the proofreading programs). One of the things that Mr. Van Natta pointed out in a previous article is that the secretaries don't want to spend the time and effort to run the spelling check program and do the necessary subsequent editing, whether part of the proofing program or a separate editor. It does take time and effort.

If you are more concerned with amount of output as opposed to quality of output, so be it. If you are writing for pub-

lication, or for any purpose for which you want the neatest and most professional appearance, you will want to take the time and make the effort to use a proofreading program, whichever variety is best for your needs.

| CRITERIA                      | SPELLSTAR | MICROSPELL  | SPELLGUARD  | MICROPROOF |
|-------------------------------|-----------|-------------|-------------|------------|
| time to proof:                | 3:30      | n/a         | 00:45       | next month |
| time to correct:              | 11:30     | n/a         | 10:00       | next month |
| total time:                   | 15:00     | 8:30        | 10:45       | next month |
| # words in dict.:             | 21026     | ?           | 20000       | 50000      |
| # words in file:              | 1704      | 1704        | 1704        | 1704       |
| <pre># different words:</pre> | 587       | 587         | 587         | 587        |
| # words misspelled:           | 79        | 53          | 86          | next month |
| total misspelled:             | 168       | 98          | ?           | next month |
| actual misspelled:            | 12        | 12          | 10          | next month |
| false errors:                 | 156       | 86          | 81          | next month |
| Memory required:              | ?         | 48K minimum | 32K minimum | next month |
| Processor required:           | any *     | any *       | any *       | Z80 only   |

\* "any" means 8080, 8085, or Z80.

? MicroSpell does not tell you how big its dictionary is.

SpellGuard does not inform you of the total number of mismatched words, only the number of unique mismatched words.

SpellStar must run under WordStar, which will not run on a 32K system. I'm not sure of the minimum memory required.

# Software Notes

# Patches For MAGSAM

Micro Applications Group has released two patches to correct bugs in its products. The first problem occurs in all versions of MAGSAM/E and PRISM/ADS. When MAGSAM is run unbuffered it may during a key search look at the buffer contents as overflow, when in fact the buffer contains index data. As result, a pointer may point to itself, causing a loop from which MAGSAM never returns. This only occurs during key searches (RK, SK, RG, SG, WA, SA, KD, SD, DR).

If the loop has occurred and the program has been aborted, the index structure may be corrupted. It should be rebuilt by sequentially reading the data file and with each record executing a WA into new index and overflow files.

To cure this problem, make the following changes to MAGSAM.BAS. Then recompile all programs using MAGSAM.BAS. (New code is underscored.)

61220 MAGSAM%(0)=VAL(MID\$(MAGSAM\$(12),MAGSAM%(14)+MAGSAM%(4),6)) MAGSAM%(7)=MAGSAM%(7)+1:RETURN 61230 IF MAGSAM\$(6)<>"B" THEN GOTO 61237 IF MAGSAM.BIO\$="0" AND MAGSAM.BUF%=MAGSAM%(0) THEN \ GOTO 61239

```
MAGSAM.BUF%=MAGSAM%(Ø):MAGSAM.BIO$="O"
```

```
61237 READ#MAGSAM% (3), MAGSAM% (0); MAGSAM$ (12)
```

```
61239 RETURN
```

The second bug occurs in all versions of MAGSAM/E, in versions 4.2 and higher of MAGSAM III, and in versions 1.1 and higher of MAGSAM IV. During a reorganize involving duplicate keys, MAGSAMRO may fail to write the last overflow record. This may result in a CBASIC error EF (End of File) on subsequent access of the index structure, and the overflow file may be missing the last record after the first reorganize. The index structure, which may be corrupted, should be rebuilt in the fashion described above.

Apply the changes below to MAGSAMRO.BAS amd recompile the programs which use it, including MAGSAMRX. New code is underlined.

64700 IF LEN (MAGSAM\$(16))>1 THEN GOSUB 64800:MAGSAM\$(16)=MAGSAM\$(16)+1 MAGSAM\$(11)=MAGSAM\$(16)-1 <u>IF</u> LEN(MAGSAM\$(11))>1 AND LEFT\$(MAGSAM\$(11),1)="O" <u>THEN</u> GOSUB 65400 <u>IF</u> MAGSAM\$(18)<>0 THEN GOSUB 64750

# Features

# A Detailed Description Of PLAN80, Part 2

PLAN80 was initially discussed by the author in the May 1982 issue of *Lifelines/The Software Magazine*. This second installment review article discusses how PLAN80 might be used.

Certainly, most PLAN80 applications relate to financial modeling. After all, depreciation and internal rate of return functions are built into PLAN80's library of functions. An example of a Procedure file that illustrates several types of depreciation over varying periods of time, and its associated printout, are shown in Tables I and II.

By virtually eliminating the drudgery previously associated with calculating, recalculating, checking and ultimately producing high quality reports, you should find that PLAN80 will enable you to save time, perform much needed sensitivity analyses, and provide (via simple PRINT commands) one or more finished reports incorporating those parameters you have selected as appropriate for your particular multivariate models, sets of equations, etc.

In short, not only will such computing power provide you with the capability to solve problems readily and accurately while certainly enhancing your own understanding, but any of the mass storage files associated with your efforts can, if so desired, be retrieved, reformatted, or subjected to further "What if...?" considerations.

## Features Of PLAN80

PLAN80 statements are divided into sections (TITLES, COLUMNS, ROWS, DATA, AND RULES). Each statement is described below.

TITLES. The TITLES section introduces up to nine lines at the top of the report. Each line may be up to 60 characters wide and be centered, left-justified, or right-justified. **COLUMNS.** There must be at least one COLUMN.

**ROWS.** ROW specifications define the structure and certain printing characteristics associated with a report's ROWS.

**DATA.** DATA may be entered into any row or column, and the range of rows applying to entry by column (or the range of columns applying to entry by row) is under user control. Values can be placed into any part of a PLAN80 application.

**INTERACTIVE.** The INTERACTIVE statement indicates where PLAN80 should begin to recalculate after values are changed in the DISPLAY mode.

**RULES.** The RULES statements indicate calculations.

**OPTIONS.** The OPTIONS section lets you specify characteristics of a printed report.

**DISPLAY.** The DISPLAY statement allows you to view results on your computer screen or to print the report.

Some of the more positive features of PLAN80 that have been noted to date are these:

- 1-PLAN80 is forgiving. It autoinitializes data fields to zero upon startup; it "fits" files compatibly when GET statements are used; when run-time errors in the RULES section of the Procedure file are skipped via the <C> "continue" key, the associated data values will be set to zero.
- 2-PLAN80's FOR, GET, PUT, INCLUDE, PRINT, ... STATE-MENTS allow for direct selection, limiting, combining, or other appropriate RULES, DATA, and DISPLAY sections of a given Procedure file being

#### Raymond J. Sonoff

operated on by the user. These STATEMENTS prove easy to implement.

- 3-The strict adherence to syntax, and the 36 error codes provided greatly aid in Procedure file program debugging.
- 4-Files can be readily called from or stored on user-specified disks, or output can be to a printer or the console.
- 5-The INTERACTIVE STATE-MENT provides the user with the capability to perform multiple computations for various data entries or combinations of data values. A simple recalculate command is all that is required after making these changes while in the Data Display Mode of PLAN80.

Where PLAN80 could be improved, at least from the user's present experience with this software package, is as follows:

- 1-A built-in "mini-editor" would save considerable time exiting from PLAN80, calling up an editor and the procedure file to be edited, making the changes thought appropriate, storing the edited file, calling up PLAN80, and inputting the edited procedure file for execution to see if no further syntax errors have been made, etc.
- 2-Many more examples and greater elaboration of how the various STATEMENTS can be utilized effectively and efficiently in Procedure files would be helpful.
- 3-The establishment of a PLAN80 USERS GROUP with a periodic mailing program would be a great idea. Numerous PLAN80 software users could contribute to its contents.

Lifelines/The Software Magazine, June 1982

4-A printable DUMP of encountered error codes with their locations to aid in debugging of Procedure files could be offered.

#### **Final Comments**

PLAN80 has proven more than a little difficult for me to get used to. Essentially, you set up each procedure file as indicated in the FEATURES section of this article. However, the fact that you compose your file using algebraic relationships under the RULES portion of the overall file, introduce DATA values in ROW and COLUMN positions, and ultimately run a program to DISPLAY the results of your file creation activity does differ considerably from normal word processor-oriented operations (including to some extent T/MAKER II which I reviewed for Lifelines/The Software Magazine also). Now, after having spent the time actually doing a number of these operations, I am beginning to appreciate and to feel comfortable with PLAN80.

So, if your experience is anything like mine, be prepared to spend time getting used to the PLAN80 "system". It *is* worth it!



|                                                                                                                                                                                              | Table I                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 "(Cost and Dep<br>:COLUMNS<br>Y1982 "1982"<br>Y1983 "1983"<br>Y1984 "1984"<br>Y1985 "1985"<br>Y1986 "1986"<br>Y1987 "1987"<br>Y1988 "1988"<br>Y1989 "1989"<br>Y1990 "1990"<br>Y1991 "1991" | MPLE #1"<br>epreciation Options Modeling"<br>preciation, in Thousands of Dollars)"                                                                                                                                                                                                                                                                  |
| SOD2 ==<br>DB3 ==<br>DB4 ==                                                                                                                                                                  | "Machine #1 (5-yrs.)" "Machine #2 (7-yrs.)" "Machine #3 (7-yrs.)" "Machine #4 (6-yrs.)" "Machine #5 (10-yrs.)" "Straight Line #1" "Sum-of-Digits #2" "Declin'g Bal. #3" "Dbl.Decl. Bal.#4" "Sum-of-Digits #5" 100 200 * 200 * 200 * 400 * * 800 @SL(MACHINE1,5,0.5) @SOD(MACHINE2,7) @DB(MACHINE3,7,1.25,1) @DB(MACHINE4,6,2.0,1) @SOD(MACHINE5,10) |

|                      | (C       | Multi-Ye<br>ost and D | ar Depre | Table II<br>ciation O<br>on, in Th | ptions Mo<br>ousands o | odeling<br>of Dollars | )          |            |                 |            |
|----------------------|----------|-----------------------|----------|------------------------------------|------------------------|-----------------------|------------|------------|-----------------|------------|
|                      | 1982     | 1983                  | 1984     | 1985                               | 1986                   | 1987                  | 1988       | 1989       | 1990            | 1991       |
| Machine #1 (5-yrs.)  | 100      | 1                     |          |                                    |                        |                       |            |            |                 |            |
| Machine #2 (7-yrs.)  | 200      | -                     | -        |                                    |                        | 22                    |            |            |                 | 115.16     |
| Machine #3 (7-yrs.)  | _        | 200                   | _        | _                                  |                        |                       | -          |            | -               |            |
| Machine #4 (6-yrs.)  | -        | -                     | 400      |                                    |                        |                       |            |            | 2 10 <b>-</b> 6 |            |
| Machine #5 (10-yrs.) | _        | 1.2                   | -        | 800                                | 1.1.1                  |                       |            | C          | -               |            |
| Straight Line #1     | 10       | 30                    | 50       | 70                                 | 90                     | 100                   | 100        | 100        | 100             | 100        |
| Sum-of-Digits #2     | 50       | 93                    | 129      | 157                                | 179                    | 193                   | 200        | 200        | 100<br>200      | 100        |
| Declin'g Bal. #3     | o        | 36                    | 65       | 89                                 | 109                    | 125                   | 139        | 150        |                 | 200        |
| Dbl. Decl. Bal. #4   | <u> </u> | -                     | 133      | 222                                | 281                    | 321                   | 139<br>347 | 365        | 159             | 166        |
| Sum-of-Digits #5     |          | 1 - N                 | -        | 145                                | 276                    | 393                   | 495        | 365<br>582 | 377<br>655      | 384<br>713 |

Lifelines/The Software Magazine, Volume III, Number 1

Software Notes Pseudo-Relocatable Subroutines, Part 2 Gregory A. Knott

Last month I presented a method of creating 'pseudo-relocatable' assembler language code using Digital Research's ASM. If you recall, this feat was accomplished using a 'relocator' constant. What this constant actually did was cause ASM to generate reference addresses to variables and labels not according to Hoyle (or Kildall if you prefer). The addresses generated were actually displaced to another location in memory. This allowed a program to be created that could be relocated to a pre-determined location other than the Transient Program Area (TPA). This relocatability was also accomplished using the distributed ASM and LOAD utilities, thus negating the need for purchasing a relocatable assembler.

This technique is most suitable to subroutines that will be called from some main program, like MBASIC. These subroutines typically have to be loaded in memory prior to MBASIC being initiated. In Part 1, I demonstrated how to load this subroutine into memory using DDT. Now, DDT is kind of fun to play around with, but I don't get my jollies jumping in and out of DDT just to load a subroutine that one of my productive programs needs. I knew there must be a better way!

#### The Dream

I thought it would be great to run one program that would place my subroutine into memory at the proper location and properly transfer control to MBASIC. It would be even better if MBASIC could start right off on its productive program. This would mean that to start any application, the user would simply have to enter one command - and it's off to the races. The user wouldn't have to know anything about DDT or even MBASIC or be concerned in the slightest that there was a slick little subroutine floating around in memory somewhere. What I would have would be "user friendly" (my definition: someone who has used your software extensively for one year and still calls you a friend)!

## The Loader

The program presented here will do just that. It is written in such a manner that it uses the relocator constant and thus will allow a better understanding of how it is employed. The program is attached in Figure 1. Let's look at it.

The very first two program statements are EQUates that define two absolute memory addresses. The first, SUB-ADDR, is the location where the subroutine will be loaded. This must match the 'Pseudo-Org' location of the compiled subroutine. The subroutine should be placed in the highest possible memory location so that MBASIC can use as much memory as possible. It should, however, be placed below the FDOS. To figure out the highest location you can use, look at locations 0006H and 0007H. CP/M-80 uses this address to tell programs where not to go. You best not go there either. (If you're using DDT to read that location you will find that DDT will adjust that location downward as DDT actually sits just below the FDOS).

The second, LOADADDR, is the location where a piece of this program will be moved. It is necessary to move this portion of the program out of the way because later MBASIC comes flying right into this area of memory and would overlay the actual loader routines and cause all kinds of havoc. Make sure this address is beneath SUB-ADDR by at least 200 bytes or the subroutine will overlay the moved portion of the program.

The first part of the program, after getting control from CP/M-80, moves the loader portion to the location LOAD-ADDR. Once the major part of the program has been relocated up into high memory, control is transferred to this portion.

At this point, the stack is set up and the subroutine is loaded into memory by the statement CALL GETPROG+Z. Note here the use of the relocator

constant. Since this part of the program is no longer relative to the TPA address, it was necessary to fake out ASM and have it generate an address for this label that we knew it could find. If you can understand why the +Z was added you'll have no trouble with this relocatability nonsense.

After our subroutine is loaded, we then CALL GETPROG + Z again, but this time we are looking for the main program MBASIC. Note that the subroutine was loaded in high memory but MBASIC was sent to the TPA. Also note that it is not only necessary to refer to labels of statements with the relocator constant but also for labels of variables such as SUBFCB. However, we don't add the relocator constant to the absolute addresses that aren't relocated like TPA and SUBADDR.

Once MBASIC is loaded we set up the command tail line which it reads from CP/M-80's default buffer area. In this case the parameter information we want to pass is to execute the program PRINTEST.BAS and not allow any memory usage above B100H (where our subroutine is now residing).

After this is accomplished we simply transfer control to location 100H, the TPA (where MBASIC is now).

If there is some problem with opening a file it is assumed to be absent from the disk and an error message is printed.

In actual use the program is executed like this:

#### A>LOADSUB

It will also require the following files to be on drive A:

MBASIC.COM PRINTHI.COM PRINTEST.BAS

## Some Caveats

When writing pseudo-relocatable subroutines you must be very careful to remember to use the relocation constant properly. If you don't, your program can either jump to an unexpected area in memory or pick up an undesired value from the wrong location. This can lead to some very strange events and has actually caused some of my disks to become unreadable.

The subroutine must be placed in an area above MBASIC but can't encroach into the CP/M-80 FDOS.

Don't forget to load MBASIC or your other programs so they will not use the area where your subroutine sits. This means using the /M: parm in the MBASIC command.

To use the loader program with different subroutines make sure to change the SUBADDR address, the SUBFCB subroutine file name, and the MBASIC PARAM parameter string with the program being executed and the /M: address.

If you have several subroutines that you would like to load, this program could be expanded quite easily. Or if you don't want to go to MBASIC right away it could also be contracted. Some hotshot hacker out there could probably find other nifty ways to improve upon this small program. Like specifying at run time much of the information that is hard coded within.

Happy Pseudo-Relocating!!!

#### **Figure 1**

|      |        | :         |       |                                         |                                             |
|------|--------|-----------|-------|-----------------------------------------|---------------------------------------------|
|      |        | 1         | LOAD  | SUB                                     | Subroutine Loader                           |
|      |        | ;         | Сору  | right (C) 1981                          | Knott & Associates                          |
|      |        | ;         | Write | ten Ø6 NOV                              | 81 Gregory A. Knott                         |
|      |        | ;         | mhia  |                                         | land two openance into                      |
|      |        | 1         |       |                                         | load two programs into<br>esigned to load a |
|      |        | :         |       |                                         | gh memory, and then                         |
|      |        | :         |       | MBASIC into t                           |                                             |
|      |        |           | Toda  | indicitie theore                        |                                             |
|      |        |           | ,,,,, | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,     |
|      |        | ;         | The   | following two                           | addresses should be                         |
|      |        | ;         |       |                                         | where the subroutine                        |
|      |        | ;         |       |                                         | and where the loader                        |
|      |        | ;         | port: | ion of this pr                          | ogram should be placed                      |
|      |        | ;         | with: | in memory.                              |                                             |
|      |        | ;         |       |                                         |                                             |
| B100 |        | SUBADDR   | EQU   | ØB1ØØH                                  | ;WHERE SUBROUTINE SITS                      |
| AØØØ | =      | LOADADDR  | EQU   | ØAØØØH                                  | ;WHERE LOADER SITS                          |
| 0000 | -      | ;<br>BOOT | EOU   | ØØØØН                                   | CP/M-80 WARM BOOT                           |
| 0005 |        | BDOS      | EOU   | 0005H                                   | CP/M-80 SYSTEM FUNCTIONS                    |
| 0009 |        | PRINT     | EQU   | ØØØ9H                                   | CP/M-80 PRINT STRING                        |
| ØØØF |        | OPEN      | EOU   | ØØØFH                                   | CP/M-80 OPEN FILE                           |
| 0010 |        | CLOSE     | EOU   | ØØ1ØH                                   | CP/M-80 CLOSE FILE                          |
| 0014 |        | READ      | EOU   | ØØ14H                                   | CP/M-80 READ SEQUENTIAL                     |
| ØØ1A | =      | SETDMA    | EOU   | ØØIAH                                   | CP/M-80 SET DMA                             |
|      |        | ;         |       |                                         | ,,                                          |
| 0080 | =      | BUFFER    | EOU   | ØØ8ØH                                   | ; PARM BUFFER                               |
| 0080 | =      | LENSECT   | EQU   | ØØ8ØH                                   | SECTOR LENGTH (128)                         |
| ØØØD | =      | CR        | EQU   | ØDH                                     | CARRIAGE RETURN                             |
| ØØØA | =      | LF        | EQU   | ØAH                                     | LINE FEED                                   |
| 0100 | =      | TPA       | EQU   | ØlØØH                                   | TRANSIENT PROGRAM AREA                      |
|      |        | ;         |       |                                         |                                             |
|      |        | ;         | This  | portion of the                          | e program moves the loader                  |
|      |        | ;         | code  | routine up in                           | to higher memory.                           |
|      |        | ;         |       |                                         | necessary is so when                        |
|      |        | ;         | MBASI | IC gets loaded                          | , it won't overlay this                     |
|      |        | ;         | progr | cam.                                    |                                             |
|      |        | ;         |       | all and the second                      |                                             |
| 0100 | 110010 | LOADSUB   | ORG   | TPA                                     | ;BASE OF PROGRAM                            |
| 0100 | 1100A0 |           | LXI   | D, LOADADDR                             | ;[D,E]> WHERE<br>;LOADER PORTION GOES       |
| 0103 | 2113Ø1 |           | LXI   | H, LOADPROG                             | ;[H,L]> WHERE<br>:LOADER IS NOW             |
| Ø1Ø6 | ØEF4   |           | MVI   | C, LENLOAD                              | COUNTER FOR LENGTH                          |
|      |        |           |       |                                         |                                             |

|                            |               |            |                           | OF LOADER ROUTINE                               |
|----------------------------|---------------|------------|---------------------------|-------------------------------------------------|
| Ø1Ø8 7E                    | ;<br>MOVELOOP | MOV        | A,M                       | PICK UP BYTE OF ROUTINE                         |
| Ø1Ø9 12                    |               | STAX       | D                         | PLACE BYTE IN HI MEMORY                         |
| Ø1ØA 23                    |               | INX        | Н                         | NEXT BYTE TO MOVE                               |
| Ø1ØB 13                    |               | INX        | D                         | NEXT LOCATION TO PLACE                          |
| ØIØC ØD                    |               | DCR        | С                         | ;ALL BYTES BEEN MOVED ??                        |
| Ø1ØD C2Ø8Ø1                |               | JNZ        | MOVELOOP                  | ; NO MOVE SOME MORE                             |
| 0110 C300A0                |               | JMP        | LOADADDR                  | ;YES. JUMP TO LOCATION                          |
|                            | ;             |            |                           | LOAD ROUTINE NOW AT                             |
|                            |               | This       | is the actu               | ual loader routine that gets                    |
|                            | ;             | reloc      | ated to his               | gh memory (LOADADDR).                           |
|                            | ;             |            |                           |                                                 |
| Ø113 =                     | LOADPROG      | EQU        | \$                        | ;BEGIN POINT OF LOADER                          |
| 9EED =                     | Z             | EQU        | LOADADDR-S                | ; RELOCATIBILITY CONSTANT                       |
|                            | i             |            |                           |                                                 |
| Ø113 31ØØAØ                | LOAD          | LXI        | SP, LOADADI               | OR ;SET UP STACK BELOW THIS                     |
| Ø116 1198AØ                | ;             | LXI        | D, SUBFCB+2               | FCB OF SUBROUTINE                               |
| Ø119 Ø1ØØB1                |               | LXI        | B, SUBADDR                |                                                 |
| Ø11C CD28AØ                |               | CALL       | GETPROG+Z                 | ; PLACE IN MEMORY                               |
|                            | ;             |            |                           |                                                 |
| Ø11F 11BCAØ                | an agis       | LXI        | D, MAINFCB-               | Z ;FCB OF MAIN PROGRAM                          |
| 0122 010001                |               | LXI        | B, TPA                    | ; WHERE IT GOES                                 |
| Ø125 CD28AØ                |               | CALL       | GETPROG+Z                 | ; PLACE IN MEMORY                               |
| a100 110aaa                | ;             |            |                           | COMMAND LINE MALL ANDA                          |
| Ø128 118ØØØ<br>Ø128 21FØAØ |               | LXI        | D, BUFFER                 | COMMAND LINE TAIL AREA                          |
| Ø12B 21EØAØ<br>Ø12E ØE14   |               | LXI<br>MVI | H, PARAM+Z<br>C, LENPARM- |                                                 |
| Ø13Ø 7E                    | LOOP          | MOV        | A,M                       | PICK UP BYTE                                    |
| Ø130 7E<br>Ø131 12         | LOUI          | STAX       | D D                       | PLACE BYTE                                      |
| Ø132 23                    |               | INX        | Н                         | ;NEXT TO GET                                    |
| Ø133 13                    |               | INX        | D                         | NEXT TO PUT                                     |
| Ø134 ØD                    |               | DCR        | С                         | ;ALL MOVED??                                    |
| Ø135 C21DAØ                |               | JNZ        | LOOP+Z                    | ; NO MOVE SOME MORE                             |
| Ø138 C3ØØØ1                |               | JMP        | TPA                       | ;YESSTART MAIN PROGRAM                          |
|                            | ;             |            |                           | de a sussuar inte moments                       |
|                            | 1             |            |                           | ads a program into memory.<br>F PROGRAM TO LOAD |
|                            | :             |            |                           | ION TO LOAD                                     |
|                            | -             | [0]0]      | / Locali                  |                                                 |
| Ø13B D5                    | GETPROG       | PUSH       | D                         | ;SAVE FCB ADDRESS                               |
| Ø13C C5                    |               | PUSH       | В                         | ;SAVE LOCATION                                  |
| Ø13D ØEØF                  |               | MVI        | C, OPEN                   |                                                 |
| Ø13F CDØ5ØØ                |               | CALL       | BDOS                      | ; OPEN FILE                                     |
| Ø142 3C                    |               | INR        | A                         | ; OPEN SUCCESSFUL??                             |
| Ø143 CA53AØ                | CIDITI OOD    | JZ         | OPENERR+Z                 | ;NO                                             |
| Ø146 D1                    | GETLOOP       | POP        | D<br>H, LENSECT           | ;WHERE PROGRAM IS GOING<br>;[H,L] = 128         |
| Ø147 218ØØØ<br>Ø14A 19     |               | DAD        | D                         | WHERE NEXT SECTOR GOES                          |
| Ø14B E5                    |               | PUSH       | Н                         | SAVE NEXT MEMORY LOC                            |
| Ø14C ØE1A                  |               | MVI        | C, SETDMA                 |                                                 |
| Ø14E CDØ5ØØ                |               | CALL       | BDOS                      | ;SET AREA TO READ TO                            |
| Ø151 C1                    |               | POP        | В                         | ;NEXT MEMORY LOC                                |
| Ø152 D1                    |               | POP        | D                         | ;FCB ADDRESS                                    |
| Ø153 D5                    |               | PUSH       | D                         | ; PUT BACK                                      |
| Ø154 C5<br>Ø155 ØE14       |               | PUSH       | B<br>C,READ               | ;AGAIN                                          |
| Ø155 ØE14<br>Ø157 CDØ5ØØ   |               | CALL       | BDOS                      | :GET 128 BYTES OF PROG                          |
| Ø15A B7                    |               | ORA        | A                         | ;END OF FILE??                                  |
| Ø15B CA33AØ                |               | JZ         | GETLOOP+Z                 |                                                 |
| Ø15E C1                    |               | POP        | В                         | ; DISCARD MEMORY LOC                            |
| Ø15F D1                    |               | POP        | D                         | ;FCB ADDRESS                                    |
| Ø16Ø ØE1Ø                  |               | MVI        | C,CLOSE                   |                                                 |
| Ø162 CDØ5ØØ                |               | CALL       | BDOS                      | ;CLOSE FILE                                     |
| Ø165 C9                    | ;             |            |                           |                                                 |
|                            | ;             | This       | routine is                | entered if open failed.                         |
|                            | ;             |            |                           |                                                 |
| Ø166 C1                    | OPENERR       | POP        | B                         | ;DISCARD MEMORY LOC                             |
| Ø167 D1<br>Ø168 13         |               | POP        | D<br>D                    | ;FCB ADDRESS<br>;[D,E]> NAME OF FILE            |
| Ø168 13<br>Ø169 217ØAØ     |               | LXI        | H, OVERLAY                |                                                 |
| Ø16C ØEØB                  |               | MVI        | C,11                      | ; LENGTH OF FILE NAME                           |
| Ø16E 1A                    | OPENLOOP      |            |                           | GET FILE NAME BYTE                              |
| Ø16F 77                    |               | MOV        | M,A                       | ; PLACE IN MESSAGE                              |
| 0170 23                    |               | INX        | Н                         | ;NEXT SPOT TO PUT                               |
| Ø171 13                    |               | INX        |                           | ;NEXT SPOT TO GET                               |
| Ø172 ØD<br>Ø173 C25BAØ     |               | DCR<br>JNZ | C<br>OPENLOOP+            | ; DONE??<br>Z ;NO, GET SOME MORE                |
| Ø173 C25BAØ<br>Ø176 116EAØ |               | LXI        |                           |                                                 |
| Ø170 110EAØ<br>Ø179 ØEØ9   |               | MVI        | C, PRINT                  | - /[0/0] / Didion 100                           |
| Ø17B CDØ5ØØ                |               | CALL       |                           | ; PRINT ERROR MSG                               |
| Ø17E C3ØØØØ                |               | JMP        | BOOT                      | ;RELOAD CP/M-80                                 |
|                            | ;             |            |                           |                                                 |
|                            | ;             | Work       | ing Storage               | Area                                            |
|                            | ;             |            | Sector 1                  |                                                 |
|                            | ;             |            |                           | ht have to be changed here:                     |
|                            | 1             | SUE        |                           | is is the name of the                           |
|                            | 1             | MA         |                           | broutine<br>is is the name of the main          |
|                            | 1             | MA.        |                           | utine                                           |
|                            | ;             | PA         |                           | is is the command line tail                     |
|                            | ;             |            |                           | be passed to the main                           |
|                            | ;             |            |                           | ogram. In the case of MBASIC                    |
|                            | 10 A A        |            |                           |                                                 |

it is necessary to put in the program you want executed when MBASIC takes control (if desired) and the highest location that MBASIC can use.

 Ø181
 ØDØA
 ERRMSG
 DB

 Ø183
 5Ø524F47520VERLAY
 DB

 Ø182
 2Ø4E4F542Ø
 DB

CR,LF 'PROGRAMNAME' ' NOT FOUND -- LOAD ABORTED',CR,LF,'\$' Ø1AB ØØ5Ø52494ESUBFCB DB Ø1C1 ØØØØØØØØØ DB Ø1CF ØØ4D424153MAINFCB DB Ø1E5 ØØØØØØØØØØ DB Ø1F3 132Ø5Ø5249PARAM DB 0013 = LENPARM EOU ØØF4 =LENLOAD EQU 0207 END

**FILE NAME** 

**UEAGLE.ASM** 

UHP125.ASM

**APPLICATION** 

Hewlett-Packard HP-125

SIO/DART AVL EAGLE computer.

computer.

# Software Notes

# For BSTAM/BSTMS Users

**UART CHIP** 

The following is a list of interfaces included with BSTAM/BSTMS. They may be used as a starting point for writing your own interface or customizing the routines to take advantage of specific hardware. Three interfaces are new - UHP125, UOSBORNE, and UROBIN

| North Star Horizon and                                              |
|---------------------------------------------------------------------|
| IMSAI 25IO.<br>Old Superbrain<br>computer.                          |
| Superbrain computer.                                                |
| Osborne computer.                                                   |
| SIO QUAY 500 series computer.*                                      |
| DEC VT-100 with VT-                                                 |
| 18X upgrade.                                                        |
| SOL computer.                                                       |
| SIO TRS-80 Model II<br>computer.                                    |
| Cromemco TUART                                                      |
| board.                                                              |
| the proper port addresses for the Xerox nong others, using Z80 SIO. |
|                                                                     |

# **Attention Dealers!**

There are a lot of reasons why you should be carrying Lifelines/The Software Magazine in your store. To provide the fullest possible service to your customers, you must make this unique publication available. It will keep them up to date on the changing world of software: on updates, new products, and techniques that will help them use the packages you sell. Lifelines can back up the guidance you give your customers, with solid facts on the capabilities of different products and their suitability to a variety of situations. Now we can also offer you an index of all back issues of Lifelines, opening up a full library of information for you and your customers.

For information on our dealer package, call (212) 722-1700, or write to Lifelines Dealer Dept., 1651 Third Ave., New York, N.Y. 10028.

# The largest selection of software from the world's largest software publisher. LIFEBOAT'S PRODUCT LIST NO. 221/2

#### **NEW** — 16-Bit Software Available

ASCOM

Languages:

Lattice C Compile

System Tools: Emulator/86 (the CP/M emulator) EM80/86 PMATE-86 UT86

## 8-Bit Software Available

System Tools:

BUG and uBUG DESPOOL DISILOG DISTEL EDI EDIT-80 FIL ETRAN IBM/CPM MAC MACRO-80 MINCE PANEL PASM PLINK PLINK I PMATE RAID Reclaim TRS-80 Model II Cust. Disk Unlock WordMaster XASM: 05, 09, 18, 48, 51, 65, 68, F8, 400 **ZAP80** ZDT Z80 Development Package

**Telecommunications:** 

ASCON BSTAM **BSTMS** Microl ink-80 RBTE-80

#### Languages:

ALGOL-60 APL/V80 BASIC Compile BASIC-80 baZic II

#### Media & Formats

This list of available formats is subject to change without notice. If you do not see your computer listed or are uncer tain, call to confirm the format code for any particular equipment.

| ADDS Multivision                               | RT |
|------------------------------------------------|----|
| ADDS Multivision<br>ALSPA 8 in                 | A1 |
| Altair 8800                                    | B1 |
| Altair 8800<br>Altos                           | A1 |
| Apple CP/M 13 Sector                           | RG |
| Apple CP/M 16 Sector                           |    |
| Archives 1                                     | SG |
| AVI Fagle II                                   | ST |
| Archives 1<br>AVL Eagle II<br>BASF System 7100 | RD |
| Blackhawk Micropolis Mod II                    | 02 |
|                                                |    |
| BMC IF-800<br>California Computer Sys 8 in     | Δ1 |
| CDS Versatile 3B                               | 01 |
| CDS Versatile 4                                |    |
| Columbia Data Products 8 in                    |    |
| Columbia Data Products 5.25 in.                |    |
| Commodore CBM/PET w/SSE                        |    |
| Box + 8050                                     | C2 |
| Commodore CBM/PET                              |    |
| w/Madison Z-RAM + 8050                         | CA |
| COMPAL-80                                      |    |
| Computer Ops N.C. HQ                           |    |
| Control Date 110                               |    |
| Control Data 110<br>CPT 8000                   | AI |
|                                                |    |
| Cromemco System 3                              |    |
| Cromemco System 2 SD/SS                        |    |
| A 14 4 11 1 14                                 |    |

Precision BASIC BD Software C Compiler CBASIC-2 CIS COBOL (Standard) CIS COBOL (Compact) COBOL-80 FORTRAN-80 KBASIC muLISP/muSTAR-80 Nevada COBOL JRT Pascal Pascal/M Pascal/MT Pascal/M + Pascal/Z PI /I-80 STIFF UPPER LISP S-BASIC Timin's Forth

**Telecommunications:** 

# Whitesmiths' C Compiler XYBASIC Language and Appli-cations Tools:

Tiny-C Tiny-C Two UCSD Pascal

BASIC Utility Disk DataStar FARS FABS II Forms 1 for CIS COBOL Forms 2 for CIS COBOL MAGSAM III MAGSAM IV MAGSORT M/SORT for COBOL 80 Programmer's Apprentice PSORT OSOBT STRING/80 STRING BIT SUPERSOR<sup>®</sup> UI TRASORT II VISAM

| Cromemco System 2 DD/SS                | RX  |
|----------------------------------------|-----|
| Cromemco System 2 DD/DS                | RY  |
| CSSN Backup                            | T1  |
| CSSN Backup<br>Datapoint 1550/2150     | A1  |
| DEC VT 18X                             | SD  |
| Delta Systems                          | A1  |
| Digi-Log Microterm II                  | RD  |
| Direct OA1000                          | M2  |
| DTC Micro 210A                         |     |
|                                        |     |
| Durango F-85<br>Dynabyte DB8/2         | R1  |
| Dynabyte DB8/4                         | Δ1  |
|                                        |     |
| Exidy Sorcerer +<br>Lifeboat CP/M-80   | 02  |
| Exidy Sorcoror +                       |     |
| Exidy CP/M-80 5.25 in                  | RW  |
| Exidy Sorcerer +                       |     |
| Exidy Sorcerer +<br>Exidy CP/M-808 in. | A1  |
| EXO                                    | A1  |
| Findex                                 | P6  |
| Heath H8 + H47                         | A1  |
| Heath H89 + Magnolia CP/M-80           | P7  |
| Heath H89 + Heath CP/M-80              | P7  |
| Helios II                              | B2  |
| Heurikon MLZ, SS                       | SN  |
| Heurikon MLZ, DS                       | SO  |
| Hewlett-Packard 125, 5.25in            | SB  |
| Hewlett-Packard 125, 8 in.             |     |
| IBEX 7100                              |     |
| ICOM 2411 Micro Floppy                 | R3  |
| ICOM 3712                              |     |
| ICOM 3812                              |     |
| IMSAIVDP-40/VDP-42                     | R/  |
|                                        |     |
| t Accoriator Softu                     | VOR |

**DataBase Management** Systems:

TIM III

Word Processing Systems and Aids: Benchmark DocuMate/Plus MicroSpell Letteright Magic Wand Spellguard TEX Textwriter III WordIndex WordStar WordStar Customization Notes **Data Management** Systems: CONDOR Formula HDBS Hoe

Microseed MDBS MDBS:DRS,.QRS,.RTL dBASE II PRISM/LMS PRISM/IMS PRISM/ADS TIM III

#### **General Purpose** Applications:

**CBS** Label Option Selector III-C2 Selector IV

#### Mailing List Systems:

Benchmark Mailing List Postmaster

# Mailing Address MailMerge for WordStar

NAD

#### **Financial Accounting** Packages:

**BOSS Financial Accounting System** 

|                                                 | 1   |  |
|-------------------------------------------------|-----|--|
| IMSAI VDP-44                                    |     |  |
|                                                 | A1  |  |
| Industrial Microsystems 5000                    |     |  |
| Industrial Microsystems 8000                    |     |  |
| Intel MDS SD<br>Intertec Superbrain DOS 0.5-2.x | A1  |  |
|                                                 |     |  |
| Intertec Superbrain DOS 3.x                     | RK  |  |
| Intertec Superbrain QD                          | RS  |  |
| ISC Intercolor 8063/8360/8963                   |     |  |
| Lexitron VT 1303 DS/DD                          | S8  |  |
| Lexor Alphasprint Model S1                      | S1  |  |
| Meca Delta-1 5.25 in                            | P6  |  |
| MICOM 2001                                      |     |  |
| MICOM 2001E                                     |     |  |
| MICOM 3003                                      |     |  |
| Micromation                                     |     |  |
| MicroMega 85                                    |     |  |
| Micropolis Mod 1                                | .Q1 |  |
| Micropolis Mod II                               |     |  |
| MITS 3200-3202                                  | B1  |  |
| Monroe OC 8820, DD/SS                           |     |  |
| Morrow Discus                                   |     |  |
| Mostek<br>MSD 5.25 in                           | A1  |  |
| MSD 5.25 in.                                    | .RC |  |
| MULTI-TECH-I                                    | .Q2 |  |
| MULTI-TECH-II                                   |     |  |
| Nascom (Gemini drives)                          |     |  |
| Nascom II with Lucas Drives                     |     |  |
| NCR 8140/9010                                   |     |  |
| NEC PC-8001                                     |     |  |
| Nicolet Logic Analyzer Model 764                | .SX |  |
| NNC-80/80W                                      | .A1 |  |
| North Star SD                                   | P1  |  |
|                                                 |     |  |

#### rently available for OEM license Peachtree Financial Packages Univair 9000 Series

**Disk Operating** 

Systems:

MS-DOS

General Ledger Accounting Structured Systems Group Financial Packages GLector

ured for CompuPro Sweet 17 and

Software Development System. Cur-

soon available config-

Numerical Problem-Solving Tools:

T/MAKER II PLAN80 Analyst Microstat muSIMP/muMATH Statpak

#### **Professional And Office** Aids: Angel

American Software Property Management Package Cornwall Apartment Management Datebook GrafTalk Guardian Professional Time Accounting Property Management PAS 3 Medical PAS 3 DENTAL Sales Pro Torricelli Author Univair 9000 Series Family Medical Managen Univair 9000 Series Family Dental Management Univair 9000 Series Insurance Agency Management Univair 8000 Medical Management Univair 8000 Dental Management Wiremaster Univair 9000 Series Legal Time Accounting

North Star DD P2 North Star QD .P3 SM Northern Telecom 503 Nylac Micropolis Mod II Q2 Ohio Scientific C3 A3 OKI IF-800 + MSA CP/M-80 OKI IF-800 + OKI/Lifeboat SF CP/M-80 SR (Above OKI entries replace catalog PET/CBM w/Small Systems Engineering Box + 8050..... PET/CBM w/Madison Z-RAM + C4 8050. Philips MICOM 2001 8 in. Philips MICOM 2001E.... R3 B4 Philips MICOM 3003 ..... Processor Technology Helios II . M1 B2 Quay 500. RO Quay 520 RP RAIR DD RE Research Machines 5.25 in Research Machines 8 in RH A1 Sanco 7000 5.25 in. Sanyo MBC 1000.... Sanyo MBC 2000.... RQ SS Sanvo MBC 3000 A1 SD Systems 5.25 in R3 SD Systems 8 in. A1 Spacebyte. A1 Tarbell 8 in A1 TEI 5.25 in R3

## for the IBM PC, plus...

#### Media & Formats

| mould of Formato        |  |
|-------------------------|--|
| IBM Personal ComputerG1 |  |
| GodBoutE1               |  |
| SeattleE1               |  |
| TecMarE1                |  |
|                         |  |

#### Books, Periodicals, Accessories

APL—An Interactive Approach Accounts Payable and Accounts Receivable-CBASIC The CP/M Handbook (with MP/M) The C Programming Language 8080/Z80 Assembly Language Techniques For Improved Programming Executive Computing Fifty BASIC Exercise General Ledger-CBASIC H W Sams Crash Course in Microcomputing Introduction to Pascal ifelines Pascal User Manual and Report The Pascal Handbook The Pascal Primer Payroll with Cost Accounting -CBASIC Structured Microprocessor Programming Using CP/M—A Self-Teaching Guide Smartmodem DC Data Cartridges Flippy Disk Kit Floppy Saver Diskette Drive Head Cleaning Kits Vari Clean Cleaning Kit

#### **Disk Operating Systems**

Software Bus Family SB-80 CP/M-80 MP/M

#### Hard Disk Integration Modules

| TEI 8 in<br>Televideo DD/DS<br>T.I.P. (Alloy Engineering, Inc.) |    |
|-----------------------------------------------------------------|----|
| Toshiba T200                                                    | SF |
| Triumph Adler Alphatronic                                       |    |
| TRS-80 Model 1 +                                                |    |
| Shuffleboard 8 in                                               | A1 |
| TRS-80 Model II                                                 | A1 |
| Vector MZ                                                       | Q2 |
| Vector System 2800                                              |    |
| Vector System B/VIP                                             |    |
| Vista V-80 5.25in. SD                                           |    |
| Vista V200 5.25in. DD                                           |    |
| Wangwriter                                                      |    |
| WORDPLEX                                                        |    |
| XEROX 820, 5.25 in<br>XEROX 820, 860 8 in                       |    |
| ZEDA 580                                                        | SH |
| Zenith Z89 + Magnolia CP/M-80.                                  |    |
| Zenith Z89 + Zenith CP/M-80                                     |    |
| Zenith DD/SS                                                    | SK |
| Zenith DD/DS                                                    |    |
|                                                                 |    |

Program names and computer names are generally trademarks or service marks of the author or manufacturing company.

All Lifeboat 8-bit software requires SB-80 (or other CP/M-80 compatible disk operating system) unless otherwise stated.

All products are subject to terms and conditions of sale

Send for full Lifeboat Associates Software Desk Reference with descriptions of all the above plus a whole lot more.

#### LIFEBOAT HAS THE ANSWER

with software, service and support from its offices in the U.S.A., U.K., Switzerland, W. Germany, France, and Japan.

LIFEBOAT ASSOCIATES • 1651 Third Ave., N.Y. 10028 • (212) 860-0300 TWX: 710-581-2524 (LBSOFT NYK) • Telex: 640693 (LBSOFT NYK)



Copyright © 1982 by Lifeboat Associates

# Features

# An Introduction to Microcommunications

The first thing I did when I woke up this morning was turn on my computer. By any but the most computer-freakish of standards, that is a somewhat radical action. My wife, for one, considers it positively weird, although she *is* getting used to it. In a few years, however, the action may be about as commonplace as opening a newspaper over the breakfast table. Indeed, that's exactly what I was doing.

About two minutes after I turned my IBM Personal Computer on, my microcommunications software was loaded. That done, I dialed up the local Telenet access port and accessed Dialcom, a Silver Spring, MD based electronic mail and computer timesharing service where I have an account. The "greeting" I received on the service informed me that two pieces of mail were waiting for me in my electronic mailbox. Tucking that piece of information away for future reference, I typed in UPI and started a controlled journey through the "newspaper's newspaper". As is my habit, I approached the news selectively, entering in a set of keywords that would take me on a journey through that subset of the day's news which would be of greatest interest to me.

When I finished reading this "electronic newspaper", I went to check the mail. In reading the messages in my electronic mailbox I found that one was a reply to a letter I had sent almost a week ago. The other, however, was a response to a message I sent last night. I filed one message, replied to and deleted the other, and got off Dialcom. The entire transaction had taken about fifteen minutes. Dialcom returned me to Telenet, from which I then accessed the computers at the University of Wisconsin, the site of a computer conference in which I have been participating.

The conference was actually four distinct sessions, each of which attracted different people. One, entitled HCT\*-ICA, was a discussion of how the Human Communications Technology Interest Group of the International Com-

munications Association could use computer conferencing to advantage. A second, called PARTY\*LINE, was an open ended "conversation" among participants in the conference. The topic bound rules of HCT\*ICA were nowhere to be found in PARTY\*LINE. and the topics ranged from requests for (and offers of) information to discussions of exotic, yet-to-be-built communications equipment like "Feel-A-Phone" (a telephone with a bionic extension that allows people to shake hands and do other "handiwork" long distance). A third, which I had started in the middle of the conference, was a forum where graduate students were discussing the electronic communication-related dissertations they were writing. It was called DISS\*DISC. Finally, a fourth session, called COMM\*-TECH, was a sort of open national seminar about communication technologies.

As I was involved in all four conferences, I accessed them all, one by one, saving a disk-transcript of the messages I received. The transcript would allow me to come back later and read the comments more carefully. Connect time is too expensive to waste reading messages selectively. As I read the new messages in the sessions, I prepared replies to various messages and when it came my turn to write messages to the sessions, I transmitted both the messages I had just written and some extended messages I had prepared the night before. Twenty-five minutes after starting, I was finished. I had received about fifty new messages and sent five.

That night, after work, I received a call from a friend. We talked for a while, and then wanting to exchange some files we had written to our computers, switched over to our modems and "talked" through our computers. It was a local call and we let it go for most of an hour. About that time my wife called me for dinner.

A few years ago, that sequence of

#### **Davis Foulger**

events would have been Science Fiction. At best, it would be seen as being a few years distant. At worst, it would have been seen as fanciful. But that is exactly what I did do today. In fact, I follow a similar routine almost every day, checking out the news and the mail via my computer in less time than it used to take just to read the newspaper. Indeed, when I finish this article, I will probably submit it to *Lifelines/The Software Magazine* the same way – saving time, effort and (maybe) money for both of us.

#### Why communicate?

Few people would buy a microcomputer as a substitute for the telephone or newspaper. Truly the greatest value of micros is their capacity to accomplish a range of useful tasks without a communications link to other computers. Word processing, spreadsheet mathematics and other applications software more than pay back the cost of the computer for most users. Still, one out of every ten microcomputer owners have bought communications capabilities for their microcomputers. And even with the microcomputer market growing rapidly enough to guarantee rapid growth in the microcommunications market without any increase in the percentage of microcomputers that also microcommunicate, that percentage is increasing and is likely to reach 25% or more by the end of this decade.

Although there are variations in the ways that people microcommunicate and the applications they use the microcommunications medium for, there are basically two reasons for microcommunicating:

- (1) Communication with other microcomputer users
- (2) Access to remote timesharing computers

This article will explore both of these general applications of microcommunications, looking at the applications that different users put the medium to, the motivations behind those uses, and the costs involved, particularly when compared to comparable communications systems. An article in a future issue of *Lifelines/The Software Magazine* will look at the necessary and ideal characteristics of microcommunications software.

# Communications With Other Users

A friend of mine has wisely noted that the first uses of microcommunications are not likely to be the ultimate ones. In the long term, microcommunications is likely to develop into a dominant mode of interpersonal communication. In business settings, this will happen within the next few years, because some of the advantages that I'll discuss can have a positive impact on both productivity and the quality of work. But as voice recognition moves from promise to reality, microcommunications may actually supersede the telephone as the dominant mode of mediated interpersonal communication in the U.S. Although some users already use a mode of interpersonal communication, the single largest application to which users currently seem to put microcommunications is program exchange. This application is a very practical one, as it solves one of the larger problems that face microcomputers today.

Overcoming Disc Incompatibility: Users who wish to exchange the programs they write between different machines are inevitably faced with the problem of disk incompatibility - the fact that very few microcomputers are capable of reading disks written for other microcomputers. Even when programs share common operating systems and systems use the same size and type of disk, system software will often prevent disk exchange. Users who wish to exchange programs between different machines not only face the differences between five and eight inch disks, hard sector and soft sector disks, single density and double density disks, and single sided and double sided disks, but the less tangible variations in the way information is packed on the disk.

IBM's *de facto* standard for eight inch disks eliminates disk compatibility problems for many eight inch machines,

but even among eight inch machines that standard is not universal. In fact, buying the software/firmware that allows some eight inch machines to read IBM-format diskettes can cost more than microcommunications does.

The number of bytes stored on a soft sectored, single sided, double density disk can fall anywhere along a continuum that ranges from the 160 Kbytes stored on an IBM Personal Computer PC-DOS format diskette to the nearly 700K bytes stored on some S-100 bus machines. In the five inch world, there simply aren't any standards, although some are beginning to talk about using the IBM Personal Computer's PC-DOS disk format as a de facto standard in the world of double density storage. A single set of universally applied standards for exchangeable storage media is not, moreover, likely to appear. There are simply too many highly successful machines operating in too many disk formats to allow any easy movement toward standards.

Microcommunications offers what is probably the single most important way out of this disk incompatibility problem. Users who are equipped for microcommunications simply dial each other up on the telephone and "talk" through their computers, exchanging files, including programs, in the process. The "equipment" needed to make this kind of program exchange over the telephone is expensive compared with the cost of the \$5.00 disk it replaces, but costs don't count when disks cannot be exchanged. There are, moreover, other advantages to exchanging files this way.

Speeding The Software Development Process: Key among these advantages is the speed with which software can be exchanged. There are basically three ways in which users can exchange software. They can mail it to each other, exchange disks in person, or microcommunicate it. No matter how close two people live, the mail will take at least 24 hours. More often than not, it will take longer than a week. Exchange in person requires that people coordinate their schedules so that they can be in the same place at the same time. That coordination may not be difficult, but it does slow the exchange and will often require one or both of the participants to go somewhat out of their way.

By contrast, microcommunicating the program doesn't even require the software developer to leave his or her computer. This can be particularly valuable in the program development process, as it allows the developer to quickly try out new features on other users. All you need is another user with microcommunications capabilities and a machine that can run the software. If, moreover, the other user has an operating auto-answer modem and host communications software, they don't even need to be at their computer to receive your software. Indeed, the ease and speed with which users can microcommunicate software is such that the microcommunication of software would probably be widespread even if the problem of disk incompatibility were solved.

## A New Mode of Conversation

This ease and speed also makes microcommunications a highly enjoyable way of conversing with someone. Indeed, microcommunications represents the bare bones of a mode of conversation that may well revolutionize the way people talk to each other within twenty or thirty years. Even now, the microcomputer has some major advantages over the telephone as a conversational medium.

A first advantage has already been implicit to the discussion of program exchange. Microcommunicators can save files that are sent to them by other microcommunicators. While these files are often programs, they can be anything, including the text of this article. In truth, literally anything that can be stored in a computer can be microcommunicated to another computer and saved there.

Once saved, moreover, it exists in an electronic form which can not only be read at any time, but which can be easily edited and revised by the recipient. This is particularly valuable if the people who are communicating are working together over long distances (and even short distances) on projects which require a document as the final product. People who are, for instance, collaborating on the writing of an article, can rapidly shuttle easily revised electronic drafts of documents to one (continued next page) another; this speeds up the writing, and ultimately improves the quality, of the final product.

Saving An Electronic Transcript: This ability to save information that is microcommunicated is not, moreover, limited to saving the files that have been prepared and sent by the other party. The microcommunicator can easily save an electronic transcript of his or her conversations with others through the computer.

The problems of keeping a record of what has been said is one of the biggest problems with conversation on the telephone. After talking with someone for twenty minutes, it is not always easy to reconstruct what has been said. You often cannot remember what you said, what the other person said, or what it was that took the conversation down a given path in the first place. The tape recorder does, of course, provide a means of keeping a record of a telephone conversation, but it is not a convenient or easy-to-transcribe means. This problem is solved in computer communication because you can easily keep a transcript of the conversation by simply saving what is being said to disk. It is easy to do, does not generally slow down the conversation, and is saved in an electronic form that is easy to read, edit, and apply to other purposes.

Sexual Microcommunications? Another advantage of the medium is its potential for simultaneity. If your microcommunications software is written to allow it, communication can become literally simultaneous, with one person responding to the other's comments even as the other person is writing them. This is made possible by the nature of the microcommunications carrier signals and the flexibility with which the microcomputer can be programmed to transmit and display information. This kind of communication capability is close to impossible in any other communications media except face to face interaction. Even there, the only conditions under which a comparable level of simultaneity can be reached is in the sex act. This kind of feature is not universally applied in existing communications software packages, but it can be. It is, plain and simply, a function of software.

# The World Of Microcommunications Games

One area in which users will appreciate this capacity for simultaneity is in the playing of multi-player computer games. The kinds of games which would be suited to microcommunications are not yet being marketed, but there are several potential characteristics of such games that could make them highly popular. First, the machine reverts to a battleground for a contest in which there can be clearcut winners and losers, where strategy becomes more flexible. The two major problems with most person versus machine computer games are the less-than-clear definition of what constitutes winning and the singularity of the strategy which ultimately beats any given game. Games with this characteristic can already be found in play on mainframe computers at schools across the country, but are uncommon on microcomputers.

A second characteristic could prove more interesting, however, as each player, with a microcomputer at his or her disposal, can potentially use that microcomputer as an assistant. In playing chess, for instance, the players could ask their computers for advice on moves. In playing a super star game, the computer could be programmed to calculate vectors, keep track of friendly and enemy ships, give warnings of impending problems and opportunities, and even take care of minor operational decisions. In this kind of game, programming skill could quickly become as important as reflexes; and strategy and planning would become an even more important component of computer gamesmanship.

## Cutting Communications Costs

If all this sounds expensive, think again. Several factors work to keep the cost of microcommunications low. Under many circumstances, a conversation via a microcomputer is less expensive than a telephone call. Under some special conditions, it can even be cheaper than a first class letter.

Consider, for instance, the amount of information that can be exchanged in a

given period of time when talking on the telephone and when microcommunicating. The rate at which most people speak generally ranges between 120 and 160 words per minute. It is difficult for most people to talk faster than that and still be understood. Contrast with that a typical microcommunications system equipped with a 300 baud modem (baud is the communications word for bit - 300 baud means 300 bits per second or roughly 37.5 characters per minute). The 300 baud microcommunications system is capable of transmitting and receiving information at a rate of about 350 words per minute two to three times the speed of typical voice communications. At 1200 baud, another common communications speed, that rate quadruples, and voice communication pales by comparison.

These speed increments can be deceiving, as most people cannot type at speeds that even approach the 120 words a minute at which almost anyone can talk. More typical typing speeds run at about twenty to forty words per minute. Microcommunications can still translate substantial savings on communication costs, though. If messages are prepared off-line before the call is made, typing rates become unimportant. The communication can be sent as a file at 350 words a minute or more, cutting communication costs by at least 50% and often considerably more. If the message is reasonably short, moreover, it can sometimes be transmitted for less than the cost of a first class letter. A late night call between New York and Los Angeles on ITT's Citi-Call long distance telephone network costs well under 10 cents a minute. Microcommunicators using such a connection at 300 baud might easily send a two- to four-page letter for less than twenty cents.

# Access To Remote Timesharing Computers

Many microcommunicators enter the microcomputer world after years of using mainframes and minicomputers in school and business. Thus, although the range of applications and the potential advantages of microcommunicating directly with others account for a large portion of the users who currently microcommunicate, there are many microcommunicators who never engage in this kind of direct user-to-user

Lifelines/The Software Magazine, June 1982

communication. These users, for the most part, use their microcomputers to access remote timesharing computers. This second use of microcommunications is becoming increasingly important as the range and quality of information, communication and computing services available on these centralized services increase and improve.

The world of timesharing and quasitimesharing is a cluttered one. Even in an article which restricted itself to exploring only commercial services, the number of companies that offer timesharing services to users would be too long to give many adequate mention. In general, the range of services that offer timesharing and quasi-timesharing services can be divided into four broad classes. First among these are commercial services which generally restrict their marketing efforts to business, government and academic audiences. Few microcommunicators will find themselves regularly accessing these services except as a function of their work. They are generally too expensive for individual users.

**Consumer Timesharing Services:** Individual users are generally targeted by the consumer timesharing services. These services, which currently include *The Source, CompuServe* and *Dow Jones,* offer users a more limited range of services than are available on industry-oriented timesharing services, but offer those services at realistic prices.

Individual users may also have access to timesharing computers at school and at work. Most universities have some sort of timesharing computer system that is available for use by students. Although students will often face restrictions on the circumstances under which they can use university equipment, the option is often a quick means to lowcost timesharing access for the single user group that can probably least afford commercial services. Access to business computers can be much more restrictive, but many companies encourage professionals and executives who use company computer resources at work to maintain such access at home.

Quasi-Timesharing Via Bulletin Boards: A final source of what might be called "quasi-timesharing services" can be found in the hundreds of electronic bulletin boards that already dot the U.S. These services, which are often available to users at low or no cost, often consist of little more than a modem, a microcomputer and some bulletin board software. As many of these systems can only communicate with one user at a time, they are not true timesharing systems, but many of the applications and services that are available to users of commercial and consumer timesharing services can be found on these electronic bulletin boards.

It should be noted that there is no special reason why a user needs a microcomputer to use these services. Most are geared to terminal users. The microcomputer will frequently lower the cost of such access, however, by allowing the user to do a large percentage of his or her message preparation offline, and by allowing the user to store the information received from the timesharing computer for later examination. A microcomputer will also allow the user to change the microcommunications software employed, to suit the particular application and the desires of the people involved.

# Applications Of Timesharing

The wide range of available timesharing services reflects, in part, the diversity of applications offered. Among the user applications obtainable on various remote computer timesharing services are electronic communications, electronic publishing, information retrieval and extended computing resources. Not all of these services are offered by all timesharing computers. Indeed, many commercial timesharing companies have concentrated their efforts on offering only a limited subset of these services. All, however, are offered by the major consumer timesharing services.

**Extended Computing Resources:** A friend of mine once commented that a microcomputer can do almost anything, if you give it long enough. Still, the speed and memory capacities of the typical 64K microcomputer limit its applications. Many software packages simply cannot be fully implemented on the typical microcomputer and many software distributors are reluctant to even try adapting their software to the

microcomputer market. Given this backdrop, it should come as no surprise that one of the biggest reasons for using remote timesharing services is the extended computing resources they offer the microcommunicator.

A wide range of applications software is available to users through commercial timesharing services, and although the options are more restricted on consumer timesharing services, the microcommunicator will find a wide range of software options available. These options include advanced statistical packages, portfolio managers, financial planning software, mineral exploration and management programs, and engineering and research and development software.

Another resource that will be of interest to some microcommunicators is the games programs that can be accessed on the consumer timesharing services. Although many of the games that are available on these services can be implemented on microcomputers, a whole new class of multi-user games can be expected to be implemented in the future. In these games, the microcommunicator will be able to program his or her microcomputer as an electronic assistant turning games of skill and rapid reaction into games of strategy. Users are not limited to pre-packaged software, moreover, and may find value in implementing their own extended programs on the remote timesharing system.

Electronic Publishing: One of the most promising new services that timesharing microcommunications introduces is the publication of newspapers, magazines, newsletters, articles, and even whole books without paper. Today that promise is reality. Microcommunicators are not only capable of reading the United Press International wire service, as I did this morning, but The New York Times, The Wall Street Journal, The Washington Post, The San Francisco Chronicle and a number of other newspapers and regular publications. These well-known publications are just the tip of the electronic publication iceberg, however; microcommunicators will find electronic publications devoted to a wide range of topics. While many are electronic versions of "hard copy" publications, some can be found nowhere else.

(continued next page)

Electronic publishing remains highly experimental. Good solutions to the problems of transmitting graphics, displaying advertising, getting people to the information they want and distributing revenues and costs are far from being found. But powerful incentives to find those solutions are the advantages of electronic publishing in terms of saving natural resources, increasing the responsiveness and accessibility of publications and making it possible to publish a far wider range of information than has ever before been possible. Even at this experimental stage, however, many microcommunicators will find the already-available electronic publications a convenient alternative to hard copy.

Information Retrieval: Even those who aren't interested in reading publications on-line will find timesharing a useful adjunct to their reading if they spend much time looking for specific kinds of information. Just about any index of publications that can be found in a library can be accessed through a computer - and with considerably greater facility. A search that might take several hours of ploughing through twenty or thirty different library volumes can be completed in a few minutes through a database timesharing service like Lockheed Dialog (currently alone in offering their services on terms that most microcommunicators can afford). The service is still expensive, running \$60 or more an hour, and will not be required by every microcommunicator, but for those who do a great deal of library research, it can be invaluable.

Bibliographic databases are not the only kind of information retrieval services available on timesharing services, however, and other users will find other kinds of timesharing database services. These services include chemical and econometric data, the full text of newspapers going back over periods of six months or more, and software that permits users to build their own timeshared databases.

Electronic Communications: However useful the above applications of remote timeshared microcommunications may be, the most useful applications of remote timesharing may be in the communication itself. Indeed, microcommunicators will find that timesharing offers both greater flexibility in communication and a way to further shave the costs of long distance microcommunications. There are already four distinct modes of microcommunication available through various timesharing services. These modes – *computer conversation, electronic mailboxes, computer conferencing* and *electronic bulletin boards* – offer users the opportunity to tailor the communication resources they utilize to their particular needs.

Electronic mailboxes are exactly what they purport to be, a place to put letters that people send to each other electronically. The biggest value of the electronic mailbox is that it is, in fact, a mailbox. To get the message, you don't have to be there when the message is left. Remembering the message is the job of the timesharing service. The fact that the mailbox is electronic leads to other values, moreover. Electronic mail can be opened from anywhere you can interface a terminal or microcomputer to a telephone. My mailbox on Dialcom is just as accessible to me from Boston, New Orleans or Los Angeles as it is from my home in Connecticut. This feature is a tremendously convenient one, especially for people who travel frequently on business. A secretary or associate can easily leave a message in an electronic mailbox with confidence that the message will get where it is supposed to go quickly.

This speed is another value of the electronic mailbox. Remember that one of the two messages I found in my electronic mailbox this morning was a response to a letter I sent last night. As my mother puts it: "Your grandchildren can open their Christmas presents in the morning and you can read their Thank you's in the afternoon". This savings in time can more than pay back the cost of an electronic mailbox all by itself, even if electronic mail were really more expensive than regular mail.

Computer conferencing and timeshared electronic bulletin boards can both be thought of as public variations on the electronic mailbox. Both store the comments of many people in a single file that can be read by many different people. The intent and organization of the two is quite different, however, and they are appropriate for rather different sets of tasks. The computer conference is organized sequentially as a kind of asynchronous small group meeting. Participants enter and leave the meeting pretty much as they please, with the computer keeping track of how much of the meeting they have read and any comments they add to the meeting. Computer conferences can be just about anything you might want them to be. They can be tightly structured and focused on a specific issue or left open to a general discussion. The conference sessions I participated in this morning included conferences that operated at both of these extremes and at points between.

The computer conference is a valuable alternative to the conventional business meeting, especially when the speed with which the group must reach a decision is less important than the quality of the decision. Computer conferences are, understandably, slow. Participants move in and out sporadically and it may take a week to generate the amount of conversation that might be generated in an hour of face-to-face discussion. It is not uncommon, moreover, to find few times when two group members are actually accessing the conference at the same time. But that slowness has value. Participants have time to digest one another's comments and are not pushed into making statements in haste. Ideas tend to become more important than emotion and it becomes difficult for group members to exert control over the meeting. As a friend has commented, "it is difficult to have an argument in a computer conference".

By contrast, electronic bulletin boards tend to be topically organized, with users choosing the things they want to read and write about by selecting options from menus of alternatives. More will be said about bulletin boards below, as they are commonly implemented as quasi-timesharing systems.

*Computer conversation* is really not appreciably different than direct userto-user microcommunications, and unless portions of the conversation are written before the user accesses the timesharing service, it can be the most expensive of the microcommunication options that are available through a time-sharing service. It can, however, be considerably cheaper than a direct microcomputer-to-microcomputer co nection. A one-hour telephone microcommunications connection between New York and Los Angeles via ATT,

Lifelines/The Software Magazine, June 1982

even during the lowest rate periods, will cost over \$13.00. That same connection can be made for less than half that amount (almost two-thirds less) using CompuServe or The Source during those same periods.

These savings multiply the speed-related savings on connect costs that microcommunicators can already gain over a voice telephone conversation. If messages are prepared off-line and transmitted at night using a 300 baud modem and a timesharing service like The Source or CompuServe, \$13.00 worth of late night telephone conversation can be microcommunicated for a price that will range somewhere between \$1.60 and \$3.00, depending on how fast you talk and the service you use.

## Quasi-Timesharing Electronic Bulletin Boards

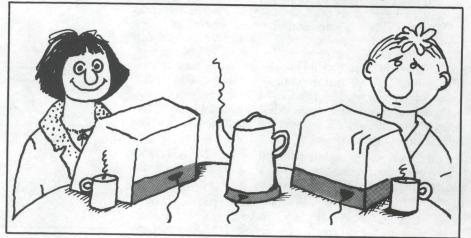
Community electronic bulletin boards offer microcommunicators another class of service with many of the same options available on consumer timesharing services. As these services are often implemented on microcomputers, a microcommunicator may have to make use of several bulletin boards to match the range of services offered by the most limited timesharing service. Still, they offer the user many timesharing service options and the availability of these services at low or no cost makes them an important option for cash-strapped microcommunicators.

Operated by local computer clubs. businesses and other organizations that want to establish a central source of information exchange, these local electronic bulletin boards are established for a variety of purposes. Computer clubs start bulletin boards to facilitate program exchange, prepare and distribute newsletters, and perform other communications functions. Businesses start the bulletin boards as a way of advertising themselves and their products, and as a way of taking orders from customers. Other organizations provide a wide range of information through bulletin boards.

Although these bulletin boards are often available to microcommunicators without cost, it should be noted that

н

"free" is not necessarily cheap. Use of a community electronic bulletin board will still require the microcommunicator to pay telephone charges that can be more expensive than consumer timesharing costs unless the call is a truly local one. A one hour late night phone call to a person just two towns removed from the one where I live (about ten miles away) costs me \$3.66, most of the cost of access to The Source or Compu-Serve during that same period. Calls to towns that are further away quickly escalate in cost to the point where it is cheaper to communicate via the Source or CompuServe than it is to make a phone call. Of course, these economics change if you must access the consumer databases via Tymnet or Telenet (if the access number for Tymnet, Telenet or the consumer database is not a local call for you). But the point remains -"free" microcomputer-based local electronic bulletin boards do not necessarily save money for users.


Listings of various electronic bulletin boards are available from a number of sources. One source of this information is an electronic bulletin board operated by Novation, the modem manufacturer. Novation lists electronic bulletin boards under item 18 on their bulletin boards menu. It can be accessed by dialing (213) 881-6880 with a 300 baud modem and using the password CAT. Another information source is AMRAD (524 Springdale Avenue, McLean, VA 22101), which will mail you a hard copy directory of community electronic bulletin boards for \$1.00.

## In Microconclusion

Even if you bought (or are considering buying) your microcomputer primarily as a standalone work station, there are

a lot of good reasons to give it microcommunications capability. The hobbyist benefits from the ability to guickly and easily exchange the software written with friends. The computer games player gains access to a way of playing new kinds of interactive games. The software developer benefits from the ability to try out innovations in software on test audiences, without having to go to the trouble of meeting that person and without the delay of shipping software through the mail. From the convenience of home, professionals gain access to the computerized files and databases they keep at work. Executives and managers can stay on top of important correspondence from wherever they find a phone and terminal.

Microcommunications has something to offer just about anybody who uses a microcomputer. And because it doesn't cost much compared with some of the alternative modes of communication currently available, it really has something to offer just about anybody who does much communicating over the telephone, or who finds that the speed and reliability of first class mail leaves something to be desired. Properly used, microcommunications can be faster, less expensive and more convenient than a telephone call; in some circumstances, microcommunications can even beat a first class letter for cost and reliability. Other characteristics of microcommunications can make the medium both more convenient and more forgiving than other media. Cost effective microcommunications depends on the use of good communications software. The necessary and ideal characteristics of such software will be examined in a coming issue of Lifelines/The Software Magazine.



# oftware Notes Modifying Control-C In MBASIC **Bill Norris**

A frequently recurring MBASIC question is "How can I keep my program from being aborted when a <sup>↑</sup>C is typed on the console?" Although this problem may be solved by several different methods, each suffers from one or more drawbacks. The best solution would be for the interpreter to have a command which would redefine or disable <sup>↑</sup>C checking. (If you wait for this though, you'll probably see complex variables implemented in FORTRAN first.) Another method would be to modify the system so that a  $\uparrow C$  is translated or ignored. This can be done by changing the BIOS or by using a keyboard redefinition program. This won't help someone using your program on another system, and what do you now do when a 1C is really needed? The method described here should work with any version of MBASIC, including the compiler, although the variable names would have to be shortened to be compatible with pre-5.0 interpreters. It has one limitation, however, in that the operating system under which it runs must have implemented its BIOS as described in Figure A. That is, the CONIN vector in the BIOS JUMP TABLE must point to either a jump or a call instruction which branches to the real console input routine. As most of the BIOS implementations which I have seen utilize this method (including those done by Lifeboat Associates), the program should work for most of you. Line 45 will notify you if this is not the case.

The rest of the program works as follows:

1) Line 15 is a subroutine which receives a variable (TEMP) containing an 8080 style two byte address. It produces as output two variables (TEMP1 & TEMP2), each containing the value of one of the address bytes.

2) Line 35 is a DATA statement which contains two machine language subroutines. The first one converts the  $\uparrow$ C, and the second restores the system to it's original state. The routines are listed in figure B.

3) Line 40 gets the value (CONIN) of the address pointed to by the BIOS console input vector. This is the address that MBASIC will call for console input. The jump table vector is ignored by MBASIC after its initialization.

Line 45 does some testing to see if the routine won't work. If the error message on this line doesn't get printed and yet the program still doesn't work, then the first instruction in the console input routine probably is a call to a console status check. Fortunately, I haven't seen this yet.

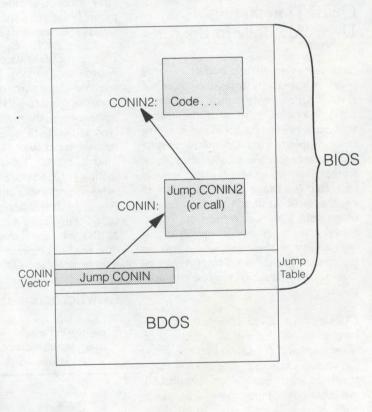
5) Line 50 determines where the machine language routines go. This can be changed to locate the routines anywhere in memory. In the program example, 1024\*64-256 puts the code at FF00 hex. This is a safe location in my system as it lies above the BIOS. For some combinations such as the Lifeboat CP/M-80 for the TRS-80 model II, using CP/M-80 version 2.25 or later, this is not a safe location. Change the value of ADDR to 8. This will put the code down in the 8080 restart region which is unused by this CP/M-80. If neither of these methods is appropriate for you, MOVCPM can be used the generate a smaller system and will free up at least 1000 bytes more than you really need.

6) Lines 55-85 put the code in place, link it with MBASIC and finally, arranges for the undoing of these patches when the program exits to the operating system.

Last note: This program replaces the  $\uparrow$ C character with a null, which MBASIC ignores. If you want your program to look for someone trying to type <sup>↑</sup>C, just change DATA item number 8 (between 62 and 201) from 0 to some other value.

10 GOTO 35 '\*\*\*\*\* BASIC-80 routine to filter control-C \*\*\*\*\* \*\*\*\*\* Written March 15, 1982 - Bill Norris. \*\*\*\*\*

15 TEMP\$=HEX\$(TEMP) : TEMP1=VAL("&H"+MID\$(+TEMP\$,3)) :


- TEMP2=VAL("&H"+LEFT\$(+TEMP\$,2)): RETURN

- RETURN 35 DATA 205,0,0,254,3,192,62,0,201,33,0,0,34,1,0,33,0,0,34,0,0,195,0,0 40 TEMP=PEEK(2)\*256+10 : CONIN=PEEK(TEMP)+PEEK(TEMP+1)\*256 45 IF PEEK(CONIN)=195 OR PEEK(CONIN)=205 THEN GOTO 50 ELSE PRINT "Not safe to patch CONIN." : STOP 50 ADDR=10241\*641-2561 : CONIN.LOW=PEEK(CONIN+1) : CONIN.HIGH=PEEK(CONIN+2) 55 FOR I=0 TO 23 : READ TEMP : POKE ADDR+1, TEMP : NEXT I

- 50 ADDR=10241\*641-2561 : CONIN.LOW=PEEK(CONIN+1) : CONIN.HIGH=PEEK(CONI 55 FOR I=0 TO 23 : READ TEMP : POKE ADDR+1, TEMP : NEXT I 60 POKE ADDR+1, CONIN.LOW : POKE ADDR+2, CONIN.HIGH 65 POKE ADDR+16, CONIN.LOW : POKE ADDR+17, CONIN.HIGH 70 TEMP=CONIN+1 : GOSUB 15 : POKE ADDR+19, TEMP1 : POKE ADDR+20, TEMP2 75 TEMP=ADDR : GOSUB 15 : POKE ADDR+11, TEMP1 : POKE CONIN+2, TEMP2 80 POKE ADDR+10, PEEK(1) : POKE ADDR+11, PEEK(2) 85 TEMP=ADDR+9 : GOSUB 15 : POKE 1, TEMP1 : POKE 2, TEMP2 90 NEW ADDR+10, PEEK(1) : POKE ADDR+11, PEEK(2) 85 TEMP=ADDR+9 : GOSUB 15 : POKE 1, TEMP1 : POKE 2, TEMP2 90 NEW ADDR+10, PEEK(1) : POKE 1, TEMP1 : POKE 2, TEMP2

- 90 NEW : REM Most of you will want to change NEW to a CHAIN statement.

#### -Figure A-



-Figure B

| CALL | CONIN2   | ;  | Get character  |
|------|----------|----|----------------|
| CPI  | 3        | ;  | Check for °C   |
| RNZ  |          | ;  | Return if not  |
| MVI  | A,Ø      | ;  | Else convert   |
| RET  | in start | ;  | and return     |
| LXI  | H,WBOOT  | ;  | Restore the    |
| SHLD | 1        |    | jump at Ø      |
| LXI  | H,CONIN  | 2; | Undo the patch |
| SHLD | CONIN+]  | L  | ; made in BIOS |
| JMP  | Ø        | ;  | Back to system |
|      |          |    |                |

Lifelines/The Software Magazine, June 1982

# New

# **Products**

The products described below are available from their authors, computer stores, software distributors and publishers.

#### BACKUP

**TRI-L** Data Systems

This program is designed for users of CP/M-80 2.x who have large-capacity winchester disk drives. This utility permits data to be copied from winchester drives onto more than one smaller capacity floppy disk. BACKUP replaces a second hard disk drive, or tape drives for archiving disk data.

#### The FinalWord

Mark of the Unicorn

This word processor, written in C, incorporates such features as multiple line spacing, automatic word wrap, automatic insert mode, global search and replace, justification, super- and subscripts, multiple fonts, underscore, move and delete blocks; cursor positions by word, sentence, line, paragraphs, beginning and end of text are supported.

In addition, The FinalWord allows the user to set up headings and a table of contents automatically, to footnote, and to create index entries. These functions are implemented when the user embeds certain codes in the text. Two files can appear on screen at once, while one is edited, and one file can be printed while another is edited. True proportional spacing is supported. User-defined commands can be created, and the product can recover deleted text.

The FinalWord requires CP/M-80, CP/M-86, or IBM PC DOS, along with a 56K system.

#### LP Disk

Agricultural Software Consultants, Inc. This linear programming problem solver handles up to fifty variables and

# Reports

fifty constraints (maximize, minimize, less than, more than, equal to). The algorithm is written in machine language to enhance speed; problems may be printed, saved to disk. Data may be altered; the solution includes price ranges and shadow prices, along with an appraisal of the maximum error the solution may contain.

LP-Disk requires CP/M-80, 48K of memory, one disk drive.

#### Mr. EDit

Micro Resources Corporation

This screen-oriented text editor is designed for non-memory mapped video display terminals; the author intends it to be user-configurable for any such terminal. Commands can be given by text or command keys, and can be English language or abbreviations. The command keys remain active in command mode, and the cursor is maintained in the screen text at all times. A single key can be defined as a series of commands. Insert and overwrite are supported, as are word wrap and paragraph fill.

Such commands as search/replace, print by line or area and other cursor control and delete commands are included. Horizontal windowing, indent levels for structured programming, primary and secondary input and output, command file handling, and iteration macros are some of the features included in this product.

Mr. EDit runs with 8080 or Z80 CPU's, requires 24K or larger transient program space (TPA), a terminal with a 12 by 64 display, and CP/M-80 or MP/M-80 2.x.

#### SID-86

**Digital Research** 

This general purpose debugger can be used to debug software or configure Digital Research 16-bit operating systems for 8086/8088 computers. It can read compiled programs in any high or low level language running under CP/M-86, concurrent CP/M-86, or MP/M-86. It has basically the same features as the 8080-based SID. It sets up to 16 permanent breakpoints with associated pass counts, has high level trace, symbolic assembly and disassembly, and expression handling.

#### **Torricelli** Author

#### the Answer in Computers

This product is a tool primarily designed for creating a Computer Aided Instruction (CAI) course. A course contains up to 250 "pages" or screens, with quizzes, test answers, and closing statistics (test results, pages completed) where desired. A built-in full screen editor allows manipulation of data; the course author may use WordStar-like or WordMaster-like commands. The answers to quiz questions and response paths of the student can be determined by the teacher. Blank pages may be inserted, pages deleted or copied.

This product requires CP/M 2.2x, an 8080 or Z80 CPU, total disk capacity of 32K, 48K RAM, a cursor addressable terminal; if a printer is used, it must be an 80-column one.

#### **New Publications**

#### Periodical Guide For Computerists

The 1980-1981 version of this index has been released, listing articles which have appeared in *Lifelines/The Software Magazine*, BYTE, Dr. Dobbs, Kilobaud, Microsystems, and twenty other publications. They are classified in broad subject headings which are further divided into more specific subject categories (i.e., Languages, Pascal). The author, article name, magazine, issue and page are listed and the article is classified according to whether it's a book review, editorial, review, etc.

#### Practical Pascal Programs

By Greg Davidson and Lon Poole This book contains a collection of Pascal programs classified under the categories of finance, management decision, statistics, science, and math. Instructions are given to allow users to modify the programs. Sample runs and practice problems are also included.

#### Software Vendor Directory

Micro-Software Services, Inc.

This directory lists more than 1800 software vendors, 123 hardware ven-

(continued next page)

dors, and twenty-two operating systems. 12,300 are categorized and indexed. The directory is available in book form or on disk, running under CP/M-80 with a database utility for finding information.

# New

# Versions

JANUS Version 1.4.3

This new version includes some minor bug corrections and adds Integer Exponentiation to the features provided by JANUS. A library of string handling procedures has now also been appended, and the assembler has been sped up.

#### Microstat Version 2.08a

The MBASIC version now contains a message warning the user not to mix Single and Double precision numbers.

#### PLAN80 Version 2.3

This update contains several improvements and bug fixes:

- 1-In an :OPTIONS section the options ZERO, DASH or BLANK may be specified to control the way in which zero values are shown; if there is no specification, dashes are used.
- 2-The "W", when used in the DISPLAY mode, now properly handles numbers in which the total number of digits before and after the decimal point is greater than 7.
- 3- An IF statement following an assignment to a cell or as the first statement of a RULES section no longer yields an Error 27.
- 4- The shift function has been expanded to work with :FOR statements. It is used in row or column rules to compute re-

sults from values in columns or rows other than the one in which the result is to be placed. For example, Cash Collection might be set to 60% of prior month's plus 40% of current month's sales. The :FOR statement may be used to tell PLAN80 to ignore certain columns or rows.

#### **PANEL Version 3.0**

The new system offers a number of improvements over version 2.2, of which the following is a summary:

- 1-Wide-screen terminals are supported.
- 2-The terminal definition file now includes specifications for up to 16 highlighting types, and also caters for additional cursor addressing methods (including ANSI standard).
- 3-New field-definition attributes are provided for right-justified, numeric, and currency fields, all handled automatically by the library subroutines.
- 4-Subroutine names and calling sequences have been simplified and rationalized, but not to such an extent that a few minutes work with a good text editor cannot change your existing programs.
- 5-Screen panel designs can now be optionally loaded at runtime, instead of being linked into the program.
- 6-The system is supplied linked and ready-to-run. The TAILOR program now includes a menu of predefined screens as well as allowing even more flexible screen and keyboard customising.
- 7-A multi-key record retrieval program is supplied which sets up an instant 'electronic filing system' to match any screen panel layout.

#### Plink-II

Version 1.14

This version implements several bug fixes and some important enhancements. Here are the problems which have been remedied:

- 1-Plink-II no longer delivers a false error #71 (program too large) message when a program using Microsoft BASIC version 5.3 or above of more than 180 Hex bytes in data area is linked.
- 2-A false error #85 is no longer generated when linking a Whitesmiths' C program.
- 3- A bug #190 was occasionally occurring when a DEFINE <symbol1> = <symbol2> command was used; this has been fixed.
- 4- The last sector of an overlay an even number of 128 byte sectors in length now loads properly.
- 5-Plink-II no longer crashes when it encounters Pascal/Z programs with 8 character identifiers.

The following are new features included in this update.

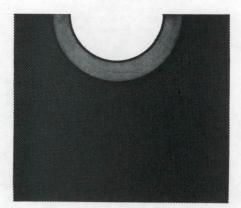
- 1-Microsoft .REL files are now linked more quickly.
- 2- Microsoft COBOL version 4.6 .REL files can now be linked by Plink-II; COBLOC and COBLBX files must be on disk.
- 3- Microsoft M80 version 3.44 .REL files containing link-time arithmetic expressions are now handled by Plink-II; if they are improperly formed an error #99 will occur.
- 4-Files produced by the new Whitesmiths' C compiler are handled by Plink-II; the header file is automatically included in the program, and the library is searched automatically. The free memory area is set to the proper address and the uninitialized data area appears as a concatenated common block.
- 5- Three error numbers have been added to signal a 4-byte integer, a relative fixup having been specified, and a loadable .0 file given as input; old and new formats are detected but cannot be used in the same program.
- 6- Most BDS C programs can now be linked as is. The run-time support program C.CCC must be on disk and is included in the program.
- 7-Four new statements have been added, specifically to identify

Phoenix Software Associates, Microsoft, Whitesmiths' or BDS C formats. If these statements are used, and they have no arguments, Plink-II does not have to identify a file's format itself.

8-Plink-II can output a linkable Entry Point File containing nothing but the absolute addresses of all global symbols defined in the program being linked. So no memory space is reserved and the entry file may be linked into a second program to permit that program to access symbols defined in the first program. Entry Point Files are useful when it becomes necessary to create a program whose executable code resides in several different files which are linked separately.

## Quic-N-Easi

Version 1.4


This update offers several new features, the most important being a report writer. The report writer allows up to twenty columns, permits breaks, totals, subtotals, and a floating dollar sign. A column can come from file data, be a constant or calculated results. The specifications for a report are entered by filling in blanks on a formatted screen, and can be saved. In addition, this new version includes dimensioned variables and color graphics. All applications developed during earlier versions will run with this one.

#### T/MAKER-II Version 2.5.3

This update features three enhancements. A new function called DATA can be used to label data files with a drive name. A default data drive can be specified. T/MAKER will continue to look for all its program files on the currently logged drive, even if the data statement is used with a different drive.

The Tally function now accepts an option called ALL which will cause it to tally all non-blank lines in a file even when they do not include a plus sign in the first column. It may not work correctly unless the file has been created with T/MAKER, however.

The Print function has been modified so that a few shortcuts may be taken for underlining and boldface when a full line is involved.



# Software Notes Notes On dBASE II, Version 2.3B

#### The Do case ... enddo construct

"Do case . . . enddo" operates exactly as described in the manual, which may be disappointing to those expecting a "case" construct à la Pascal. The first "endcase" encountered will pair with the first "do case" statement, whether or not there were intervening "do case" statements. That is, this procedure does not nest.

With x < > '0' and x < > '1' the following sequence will always execute the inner "DO CASE" statement, and never print "x=2" or "x=3" (see Figure 1).

#### A note of warning on variable names

Strange and wonderful things can happen if you do not take care in naming database fields which have boolean data types. Take the case of a database called "database" with a field named "DONE", of type boolean, being opened with the loop in Figure 2.

If the first record in the database has a true value in the field 'Done', the program will terminate immediately with no prompting on the screen. The loop termination condition will be true if either the memory variable called 'Done' *or* the database field called 'Done' is true.

Moral: reserve sets of variable names for control loops e.g. "loopdone", "loopdone1".

stor f to done Figure 2
use database
do while .not. done
accept "Press Q to quit or D to do something" to c
if !(c)="Q'
stor t to done
else
< do something >
enddo

Michael Olfe

Figure 1

do case
 case x='0'
 ? 'x=0'
 case x='1'
 ? 'x=1'

do case case y='Ø' ? 'Y=Ø' otherwise ? 'y<>Ø' endcase

case x='2' ? 'x=2' case x='3' ? 'x=3' endcase

Lifelines/The Software Magazine, Volume III, Number 1

(continued next page)

The listed software is available from the authors, computer stores distributors, and publishers. Except in the cases noted, all software requires CP/M-80, SB-80, or compatible operating systems.

S P MR Standard Version Processor Memory Required

| New Pedulet         S         P         MR           ACCUSS 50         1.0         600/220         54.         Needs EM/ COBOL. Runs w/CP/M-40, OASIS, UNIX           ACCUSS 50         1.0         600/220         54.         Needs EM/ COBOL. Runs w/CP/M-40, OASIS, UNIX           ACCUSS 50         1.0         600/220         55.         W/H Works nut immer play.           Accounts Payable Structured Sys         1.3         600/220         55.         Needs EM/ COBOL. Runs w/CP/M-40, OASIS, UNIX           Accounts Payable Fractured Sys         1.4         600/220         55.         Needs EM/ COBOL. Runs w/CP/M-40, OASIS, UNIX           Accounts Reservable/         1.1.40         800/220         55.         Needs EM/ COBOL. Runs w/CP/M-40, OASIS, UNIX           Accounts Reservable/         1.0         800/220         55.         Needs EM/ COBOL. Runs w/CP/M-40, OASIS, UNIX           Accounts Reservable/         1.0         800/220         55.         Needs EM/ COBOL. Runs w/CP/M-40, OASIS, UNIX           Accounts Payable Structured Sys         1.3         800         55.         Needs EM/ COBOL. Runs w/CP/M-40, OASIS, UNIX           Accounts Payable Structured System         1.0         800         55.         Needs EM/ COBOL. Runs w/CP/M-40, OASIS, UNIX           Accounts Payable Structured System         1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N. D. L. L. January ing are listed i | n holdface |          |      |                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------|----------|------|----------------------------------------------------------|
| Locase         Lo         6880/280         54K         Needs (M/ COBOL, Runs w/ CP/M-80, OASIS, UNIX           Accounts Payable/Opteretics         1.0         9000/280         56K         Fert, W/ M-90, Lans w/ CP/M-80, OASIS, UNIX           Accounts Payable/Opteretics         07-13-80         9000/280         64K         Needs (M/ COBOL, Runs w/ CP/M-80, OASIS, UNIX           Accounts Reversible/Pacteries         07-13-80         9000/280         64K         Needs (M/ COBOL, Runs w/ CP/M-80, OASIS, UNIX           Accounts Reversible/Pacteries         0         9000/280         64K         Needs (M/ COBOL, Runs w/ CP/M-80, OASIS, UNIX           Accounts Reversible/Pacteries         1.0         6000/280         64K         Needs (M/ COBOL, Runs w/ CP/M-80, OASIS, UNIX           Accounts Reversible/Pacteries         1.0         6000/280         44K         Needs (M/ COBOL, Runs w/ CP/M-80, OASIS, UNIX           Accounts Reversible/Pacteries         1.0         0000         24K         Needs (M/ COBOL, Runs w/ CP/M-80, OASIS, UNIX           Accounts Reversible/Pacteries         2.0         0000         24K         Needs (M/ COBOL, Runs w/ CP/M-80, OASIS, UNIX           Accounts Reversible/Pacteries         2.0         0000         24K         Needs (M/ COBOL, Runs w/ CP/M-80, M/ S-DOS           Address Management (Cornwall)         2.0         2.0         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      |            | р        | MR   |                                                          |
| Accounts Pyshelo // Cyberentics         Lo.         Needs RM (COBOL, Runs w./CP/M-80, OASIS, UNIX           Accounts Pyshelo // MC         1.0         0000 / 20         Sec         For (/// M-80, 2)           Accounts Pyshelo // MC         0         0000 / 20         Sec         For (/// M-80, 2)           Accounts Revervable // Cybernetics         0         9800 / 20         Sec         For (/// M-80, 2)           Accounts Revervable // Cybernetics         0         9800 / 20         Sec         For // M-80, 2)           Accounts Revervable // Cybernetics         0         9800 / 20         Sec         For // M-80, 2)           Accounts Revervable // Cybernetics         0         9800 / 20         Sec         For // M-80, 2)           Accounts Revervable // System         1.0         9800 / 20         Sec         For // M-80, 2)         OASIS           Accounts Revervable // System         1.0         9800 / 20         Sec         For // M-80, 2)         OASIS           Accounts Revervable // System         1.0         9800 / 20         Sec         For // M-80, 2)         OASIS           Accounts Revervable // System         1.0         9800 / 20         Sec         For // M-80, 2)         OASIS           Accounts Revervable // System         1.0         9800 / 20         Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      |            | -        |      |                                                          |
| Accounts         1.0         0000         56K         For CP (M-80.2.2.           Accounts Psychol Structure         07-13-80         0800 / 200         64K         Needs BA3C 60.4.3.1           Accounts Psychol Psychol Structure         07-13-80         0800 / 200         64K         Needs BA3C 200.C. Runs w: CP /M-80. OA515, UNIX           Accounts Reversable /MC         000         200         56K         With Strait Im spkg.           Accounts Reversable /MC         000         200         56K         With Strait Im spkg.           Accounts Reversable /MC         000         200         56K         With Strait Im spkg.           Accounts Reversable /MC         1.0         000         56K         With Strait Im spkg.           Accounts Reversable /MC         1.0         000         56K         With Strait Im spkg.           Accounts Reversable /MC         1.0         000         56K         With Strait Im spkg.           Accounts Reversable /MC         1.0         200         45K         Needs CALSIC 2.00KT/ULTRASORT           AlcOunt Reversable /MC         1.0         200         45K         Needs ALSIC 2.00KT/ULTRASORT           AlcOunt Reversable /MC         1.0         000         45K         Needs ALSIC 2.00KT/ULTRASORT           AlcOunt Reversable /M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ACCESS-80                            | 1.0        | 8080/280 | 34N  | Needs RM/COBOL. Runs w/CP/M-80, OASIS, UNIX              |
| Accounts Payable Structured Syn         1.38         000         53K         w/f. Works run time pkg.           Accounts Payable Practice         0600/250         64K         Needs BM/COBOL, Runs w/CP/M-80. OASIS, UNIX           Accounts Payable Practice         0600/250         64K         Needs BM/COBOL, Runs w/CP/M-80. OASIS, UNIX           Accounts Reservable/Pacture         07.13-80         0600/250         64K         Needs BM/COBOL, Runs w/CP/M-80. OASIS, UNIX           Accounts Reservable/Pacture         07.13-80         0600/250         64K         Needs BM/COBOL, Runs w/CP/M-80. OASIS, UNIX           Accounts Reservable/Pacture         07.13-80         0600/250         24K         Needs CMASIC2, 0500F7/ULTRASORT           Accounts Reservable/Pacture         2.0         980         52K         Needs CMASIC2, 0500F7/ULTRASORT           Accounts Reservable/Pacture         2.0         980         52K         Needs CMASIC2, 0500F7/ULTRASORT           Accounts Reservable/Pacture         3.0         2.00         46K         Needs CMASIC2, 0500F7/ULTRASORT           Accounts Reservable/Pacture         5.3         0600         46K         Needs CMASIC2, 0500F7/ULTRASORT           Ascounts Reservable/Pacture         5.3         0600         46K         Needs CMASIC2, 0500F7/ULTRASORT           Ascounts Reservable/Pacture <td< td=""><td>Accounts Payable/Cybernetics</td><td>1.0</td><td>8080/Z80</td><td>56K</td><td>For CP/M-80 2.2</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Accounts Payable/Cybernetics         | 1.0        | 8080/Z80 | 56K  | For CP/M-80 2.2                                          |
| Accounts Parable/Pachtree         07-13-80         660/280         640         Needs DACCOUNT         Accounts Parable/MC           Accounts Recrivable/MC         10         000/280         640         Needs DACCOUNC. Runs w/CP/M-80, OASIS, UNIX           Accounts Recrivable/MC         07-13-80         000         640         CP/M-80, 21         4.51           Accounts Recrivable/MC         07-13-80         000         640         Needs DACCOUNC. Runs w/CP/M-80, OASIS, UNIX           Accounts Recrivable/MC         07-13-80         000         640         Needs DACCOUNC. Runs w/CP/M-80, OASIS, UNIX           Accounts Recrivable/MC         10         000         640         Needs DACCOUNC. Runs w/CP/M-80, OASIS, UNIX           Accounts Recrivable/MC         21         220         640         Needs DACCOUNC. Runs w/CP/M-80, OASIS, UNIX           Accounts Recrivable/MC         10         220         640         Needs DACCOUNC. Runs w/CP/M-80, OASIS, UNIX           Accounts Recrivable/MC         10         200         640         Needs DACCOUNC. Runs w/CP/M-80, OASIS, UNIX           Accounts Recrivable/MC         10         200         640         Needs DACCOUNC. Runs w/CP/M-80, OASIS, UNIX           Accounts Recrivable/MC         12         000         640         W/CR         Needs DACCOUNC. Runs w/CP/M-80, OASIS, UNIX <td>Accounts Payable/Structured Sys</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Accounts Payable/Structured Sys      |            |          |      |                                                          |
| Accounting Plus         DBB0/250         64K         Needs RM/CCBCL, Runs w(CP/M-80, OASIS, UNIX           Accounts Recrivable/Machine         0.713-60         B080/260         44K         Needs RM/CCBCL, Runs w(CP/M-80, OASIS, UNIX           Accounts Recrivable/Machine         0.713-60         B080/260         44K         Needs RM/CCBCL, Runs w(CP/M-80, OASIS, UNIX           Accounts Recrivable/Factured Sys         1.4C         6000         44K         Needs RM/CCBCL, Runs w(CP/M-80, OASIS, UNIX           Accounts Recrivable/Factured Sys         1.4C         6000         24K         Needs RM/CCBCL, Runs w(CP/M-80, OASIS, UNIX           Accounts Recrivable/Factured Sys         1.4C         6000         24K         Needs RM/CCBCL, Runs w(CP/M-80, OASIS, UNIX           Accounts Recrivable/Factured Sys         1.4C         6000         24K         Needs RM/CCBCL, Runs w(CP/M-80, OASIS, UNIX           Accounts Recrivable/Factured Sys         1.4C         6000         24K         Needs RM/CCBCL, Runs w(CP/M-80, OASIS, UNIX           Accounts Recrivable/Factured System         1.3         2.00         64K         Needs RM/CBCM, MAChine System         1.00           ASIC 40 Interpreter         5.3         8000         48K         W/CF/M-80, ASI 48/L         41.31           ASIC 40 Interpreter         1.4         8000         48K         W/CF b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Accounts Payable/Peachtree           | 07-13-80   |          |      | Needs BASIC-80 4.51                                      |
| Accounts Receivable/Sectured         0.1         0.800/280         56K         CP/M-80.22         0.1         0.5           Accounts Receivable/Sectured Sys         1.4C         60.00         56K         trivela IASEC and the pipe.           Accounts Receivable/Sectured Sys         1.4C         60.00         56K         trivela IASEC and the pipe.           Accounts Receivable/Sectured Sys         1.4C         60.00         56K         trivela IASEC and the pipe.           Accounts Receivable/Sectured Sys         1.4C         60.00         2.4K         Needs CIASIC2           ArkALYST         2.0         60.00         2.4K         Needs CIASIC2           Accounts Receivable/Sectured System         3.11         2.50         Asternated Print         Needs CIASIC2           Ascounted Print         3.11         2.60         48K         Needs CIASIC2         Sectify operating system: IBMPC/CPM-86/MS-DO5           ASSIC Utility Disk         2.0         6.00         48K         Needs CIASIC2         Sectify operating system: IBMPC/CPM-86/MS-DO5           BASIC Utility Disk         2.0         6.00         48K         Needs CIASIC2         Sectify operating system: IBMPC/CPM-86/MS-DO5           BASIC Utility Disk         2.0         2.1         Give Name & Model # of the vide terminal Circle in the vide terminal Circl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Accounting Plus                      |            | 8080/280 | 64K  | Needs RM/COBOL Runs w/CP/M-80, OASIS, UNIX               |
| Accounts Restructure         Of 13-80         Process         Proces         Process         Process <td>Accounts Receivable/Cybernetics</td> <td>10</td> <td>8080/780</td> <td>56K</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Accounts Receivable/Cybernetics      | 10         | 8080/780 | 56K  |                                                          |
| Accounts Recrivative Sys         1.4C         8080         56K         w/H Works run time Pks.           Atdees Management System         1.0         8080         24K         Needs CLASIC2_OSORT_ULTRASORT           ALGOL 40         2.2         2.80         24K         Needs CLASIC2_OSORT_ULTRASORT           ALGOL 40         2.2         2.80         24K         Needs CLASIC2_OSORT_ULTRASORT           Apartment Management (System 1)         1.0         2.00         Needs CLASIC2_OSORT_ULTRASORT           Apartment Management (Cornwall)         1.0         2.00         Needs CLASIC2_OSORT_ULTRASORT           Astonated Patient History         1.2         8080         48K           Astonated Patient History         1.2         8080         48K           BASIC Dillip Tokk         2.0         8080         48K           BASIC Dillip Tokk         2.0         8080         48K           BOSIS Enancial Accounting System         1.08         8080         32K           BOSIS Enancial Accounting System         1.2         8080         32K           BOSIS Enancial Accounting System         1.2         8080         32K           BOSIS Concol Compiler         2.1         8080         32K           BOSIS Concol Compiler         1.4 <td>Accounts Receivable/MC</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Accounts Receivable/MC               |            |          |      |                                                          |
| Address Management System         1.0         80.00         2.4         Response 2.017         Deck Construct Particle         Deck Particle         Deck Particle         Deck Particle <td>Accounts Receivable/Structured Sys</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                          | Accounts Receivable/Structured Sys   |            |          |      |                                                          |
| ALCOL 60         4.8L         Base         C2X         Needs CEASIC 2_OSORT         Needs CEASIC 2_OSORT           Apartment Management (Cornwall)         1.0         280         48K         Needs APL terminal         Needs APL terminal           ASCOM         2.01         8860         Spectroperating system: IBMPC/CPM-86/MS-DO5           ASCOM // Cornwall)         1.0         280         48K           ASCOM // Cornwall         1.0         800         48K           ASCOM // Cornwall         1.0         800         48K           ASCOM // Cornwall         0.00         2.7         600           ASIC R0 Interpreter         5.3         8000         48K           BASIC Compler         1.1         6000         48K           BOS Financial Accounting System         1.3         8000         48K           BOS Compler         1.4         8000         2.8K           BOS Compler         1.4         8000         2.4K           Whitesmith C Compler         1.3         8000         2.4K           BOS Compler         1.3         8000         2.4K           BOS Compler         1.4         8000         2.4K           BOS Compler         1.3         8000         48K </td <td>Address Management System</td> <td></td> <td></td> <td></td> <td>Requires 2 drives</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Address Management System            |            |          |      | Requires 2 drives                                        |
| AP/L/Xeb         5.2         Z80         48K         Needs CAPL terminal           Apartnent Management (Cornwall)         1.0         Z80         Specify operating system: IBMPC/CPM-86/MS-DO5           ASCOM // 40         3.1         280         Specify operating system: IBMPC/CPM-86/MS-DO5           Ascomatel Patient History         1.2         880         48K           Astic Compiler         5.3         880         48K           Marking Management (Cornwall)         0.0         7.4         880           Astic Compiler         5.3         8800         48K           Marking Mall Ist         1.1         600         48K           Benchank Mold Ist Ist         1.1         600         48K           BOSS Demo<br>Constraints System         1.46         880         48K           BOSS Compiler         2.3         880         64K           BOS Compiler         2.4         880         64K           BOS Compiler         2.4         880         64K           BOS Compiler         2.4         880         64K           BOS Compiler         4.4         880         48K           BOS Compiler         4.4         880         48K           BOS Compiler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |            |          |      | Needs CRASIC2 OSORT/UILTRASORT                           |
| ALL Val:         Nasegement (Cornwall)         1.0         2.80         Needs CBASIC2           ASCOM         2.01         8080         Specify operating system: IBMPC/CPM-86/MS-DOS           ASCOM // AG         2.01         8080         48K           ASM // TAA         1.1         2.00         48K           ASIG So Interpreter         2.3         8080         40K           ASIG Continer         0.0         2.00         60K           BASIC Utility Disk         2.0         8080         40K           BASIC Complex         2.0         8080         40K           BASIC Complex         1.0         8080         40K           BOSS Financial Accounting System         1.0         8080         40K           BOSS Financial System         1.3         8080         40K           Whitesmiths         1.0         8080         32K         w//C book           BOSS Financial System         1.3         8080         40K         w//C book           BOSS Financial System         1.3         8080         40K         w//C book           BOSS Financial System         1.3         8080         40K         w//C book           BOSS Financial System         1.4         8080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |            |          |      | Needs APL terminal                                       |
| ASC OM         Specify operating system: IBMPC/CPM-86/MS-DOS           ASC OM/.66         2.01         8080         Specify operating system: IBMPC/CPM-86/MS-DOS           ASC OM/.66         2.01         8080         48K           Astamated Pater         5.21         8080         48K           ASIC Utility Disk.         2.00         880         48K           BASIC Utility Disk.         2.03         2.00         880           BASIC Utility Disk.         2.03         2.00         610           BASIC Utility Disk.         2.03         2.00         610           BASIC Utility Disk.         2.01         6100         6100           BOSS Demo.         1.08         8080         48K           BOSS Demo.         1.08         8080         48K           BOSS Demo.         1.08         8080         48K           BOS Demo.         1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | APL/V80                              |            |          | 4010 |                                                          |
| ASC OW As         2.01         8066         Specify operating system: IBMPC/CPM-86/MS-DOS           ASM/ATTAN         3.11         2.00         48K           Automated Patient History         1.2         8000         48K           Astic Compiler         5.2         8000         40K           BASIC Compiler         0.303         Z-80         w/Vers. 4.51,5.21           Benchmark Mord Processor         2.0         8000         48K           Benchmark Mall List         1.06         8080         48K           BOS Domo         1.06         8080         48K           BOS Domo         1.08         8080         48K           BOS Compiler         1.46         8080         32K           BTAM Communitation System         1.68         8080         48K           Mitesmilt Compiler         2.08         8080         32K           BTAM Compiler         2.08         8080         32K           CBS ADC Compiler         1.32         8080         48K           Mitesmilt Compiler         1.38         8080         48K           CBS ADC Compiler         1.44         8000         32K           CBS ADC Compiler         1.42         8080         48K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                      |            |          |      |                                                          |
| ASM/XITAN         3.11         280         48K           Automated Pattern History         1.2         800         46K           MASIC Compiler         5.21         800         46K           MASIC Unity Date         2.0         8080         46K           BazZa Li         03/03         Z-20         Give Name & Model # is of the video terminal           Benchmark Mord Processor         1.0         8080         46K           Benchmark Mord Processor         1.0         8080         46K           Benchmark Mord Processor         1.0         8080         46K           BOS Financia         1.08         8080         46K           BSTAM Communication System         1.46         8080         32K           BSTAM Communication System         1.2         220         24K           BOS Compiler         1.146         8080         45K           BSTAM Communication System         1.3         8080         45K           CIS COBOL Compiler         4.41         8080         45K           CIS COBOL Compact cmm Cenerator         1.6         8080         45K           COBOL-80 Compiler         4.41         8080         45K           COBOL-80 Compact cmm Cenerator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                      |            |          |      | Specify operating system: IBMPC/CPM-86/MS-DO5            |
| Addit Compiler         5.3         8080         48K           MASICe Sol Interpreter         5.21         8080         40K           MASICe Julity Disk         2.0         800         48K           Bask Culity Disk         2.0         800         48K           Benchmark Moll List         0003         Zs0         Give Name & Model #'s of the video terminal Give Name & Model #'s of the video terminal Give Name & Model #'s of the video terminal Give Name & Model #'s of the video terminal Give Name & Model #'s of the video terminal Give Name & Model #'s of the video terminal Give Name & Model #'s of the video terminal Give Name & Model #'s of the video terminal Give Name & Model #'s of the video terminal Give Name & Model #'s of the video terminal Give Name & Model #'s of the video terminal Give Name & Model #'s of the video terminal Give Name & Model #'s of the video terminal Give Name & Model #'s of the video terminal Give Name & Model #'s of the video terminal Give Name & Model #'s of the video terminal Give Name & Model #'s of the video terminal Give Name & Model #'s of the video terminal Give Name & Model #'s of the video terminal Give Name & Model #'s of the video terminal Give Name & Model #'s of the video terminal Give Name & Model #'s of the video terminal Give Name & Model #'s of the video terminal Give Name & Model #'s of the video terminal Give Name & Model #'s of the video terminal Give Name & Model #'s of the video terminal Give Name & Model #'s of the video terminal Give Name & Model #'s of the video terminal Give Name & Model #'s of the video terminal Give Name & Model #'s of the video terminal Give Name & Model #'s of the video terminal Give Name & Model #'s of the video terminal Model #'s of the video terminal Give Name & Model #'s of the v                                                                                                                                                                                                                              |                                      |            |          | 101/ |                                                          |
| BASIC Unity Date         5.21         8080         40K         w/Vers. 4.51.5.21           BASIC Unity Date         0.303         Z40         Give Name & Model #s of the video terminal Give Name & Model #s of the video terminal Cive Name & Model #s of the video terminal Cive Name & Model #s of the video terminal Cive Name & Model #s of the video terminal Cive Name & Model #s of the video terminal Cive Name & Model #s of the video terminal Cive Name & Model #s of the video terminal Cive Name & Model #s of the video terminal Cive Name & Model #s of the video terminal Cive Name & Model #s of the video terminal Cive Name & Model #s of the video terminal Cive Name & Model #s of the video terminal Cive Name & Model #s of the video terminal Cive Name & Model #s of the video terminal Cive Name & Model #s of the video terminal Cive Name & Model #s of the video terminal Cive Name & Model #s of the video terminal Cive Name & Model #s of the video terminal Cive Name & Model #s of the video terminal Cive Name & Model #s of the video terminal Cive Name & Model #s of the video terminal Cive Name & Model #s of the video terminal Cive Name & Model #s of the video terminal Cive Name & Model #s of the video terminal Cive Name & Model #s of the video terminal Cive Name & Model #s of the video terminal Cive Name & Model #s of the video terminal Cive Name & Model #s of the video terminal Cive Name & Model #s of the video terminal Cive Name & Model #s of the video terminal Cive Name & Model #s of the video terminal Cive Name & Model #s of the video terminal Cive Name & Model #s of the video terminal Cive Name & Model #s of the video terminal Cive Name & Model #s of the video terminal Cive Name & Model #s of the video terminal Cive Name & Model #s of the video terminal Cive Name & Model #s of the video terminal Cive Name & Model #s of the video terminal Cive Name & Model #s of the video terminal Cive Name & Model #s of the v                                                                        |                                      |            |          |      |                                                          |
| BASIC II         20         2000         48K           Back (1)         03/03         Z/30         Give Name & Model is of the video terminal Give Name & Model is of the video terminal Give Name & Model is of the video terminal Give Name & Model is of the video terminal Give Name & Model is of the video terminal Give Name & Model is of the video terminal Give Name & Model is of the video terminal Give Name & Model is of the video terminal Give Name & Model is of the video terminal Give Name & Model is of the video terminal Give Name & Model is of the video terminal Give Name & Model is of the video terminal Give Name & Model is of the video terminal Give Name & Model is of the video terminal Give Name & Model is of the video terminal Give Name & Model is of the video terminal Give Name & Model is of the video terminal Give Name & Model is of the video terminal Give Name & Model is of the video terminal Give Name & Model is of the video terminal Give Name & Model is of the video terminal Give Name & Model is of the video terminal Give Name & Model is of the video terminal Give Name & Model is of the video terminal Give Name & Model is of the video terminal Give Name & Model is of the video terminal Give Name & Model is of the video terminal Give Name & Model is of the video terminal Give Name & Model is of the video terminal Give Name & Model is of the video terminal Give Name & Model is of the video terminal Give Name & Model is of the video terminal Give Name & Model is of the video terminal Give Name & Model is of the video terminal Give Name & Model is of the video terminal Give Name & Model is of the video terminal Give Name & Model is of the video terminal Give Name & Model is of the video terminal Give Name & Model is of the video terminal Give Name & Model is of the video terminal Give Name & Model is of the video terminal Give Name & Model is of the video terminal Give Name & Model is of the video ter                                                                |                                      |            |          |      | w/Vers. 4.51.5.21                                        |
| Barlow         03/03         Z-80           Berchmark Word Processor         2.2           Berchmark Word Processor         1.3           Berchmark Word Processor         1.4           Berchmark Mail List         1.1           Berchmark Mail List         1.1           Boots Financial Accounting System         1.6         0800         48K           BOSS Financial Accounting System         1.6         0800         32K           BOSS Financial Accounting System         1.6         0800         32K           Whitesmith C Compiler         2.1         8080         24K           BUG/ABUC Debuggers         3.20         2.20         24K           BUG/ABUC Debuggers         3.20         2.80         32K           CBS Store Compiler         1.4         8080         48K           COBOL Compiler         1.6         8080         48K           COBOL Compiler         4.6         8080         48K<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BASIC-80 Interpreter                 |            |          |      |                                                          |
| Benchmark Word Processor         2.2         Cive Mail St Mai |                                      |            |          |      |                                                          |
| Benchmark Mail List         1.4         000         48K         Needs 2/3- drives w/min 200k each, & 132-col. printer           BOSS Dumo         1.6         0000         32K         Needs 2/3- drives w/min 200k each, & 132-col. printer           BOSS Dumo         1.6         0000         32K         Needs 2/3- drives w/min 200k each, & 132-col. printer           BOSS Dumo         1.5         0000         32K         W/C book           Whitemiths C Compiler         2.1         0000         60K           BUG, ABUG Compiler         2.3         0000         48K           BUG, ABUG Compiler         1.4.1         9080         48K           CBS COBOL Compiler         1.4.1         9080         48K           FORMS 1 CIS COBOL Form Generator         1.06         8080         48K           COBOL 80 COBOL Form Generator         1.06         8080         48K           COBOL 80 Compiler         4.6         8080         48K           COBOL 80 FULS M/SORT         1.16.4         8080         48K           COBOL 80 FULS M/SORT         1.06         8080         48K           COBOL 80 FULS M/SORT         1.06         8080         48K           COBOL 80 FULS M/SORT         2.04         8080         48K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Benchmark Word Processor             | 2.2        |          |      | Give Name & Model #'s of the video terminal              |
| DOSS Dumo         108         0000         48K           BST AM Communication System         1.45         9000         32K         w/'C' book           BDS C Compiler         1.46         9000         32K         w/'C' book           BTM Communication System         1.2         9000         32K         w/'C' book           BTMS         1.2         9000         32K         w/'C' book           BST MS         1.2         9000         32K         w/'C' book           BST MS         1.2         9000         32K         w/'C' book           BST MS         1.2         9000         32K         w/'C' book           CBS COROL Compiler         4.4         9000         48K         Needs no support language           COBOL Compart         3.46         9080         48K         Needs 1.41 or 2.XX           COBOL-80 Compiler         4.6         9880         48K         CDRIME OF DUS M/'SORT         41         8080         48K           COBOL-80 Compiler         4.6         9880         48K         CBASIC needed         Communication Manager         1.04         8080         48K           COBOL-80 Compiler         4.0         2.38         8080         48K         Needs BASiZ I<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Benchmark Mail List                  |            | 2222     | 101  | Needs 2/3- drives w/min 200k each & 132-col. printer     |
| BQB3 Math         4.5         6060         32K         w//C book           BDS C Compiler         1.4         6080         32K         w//C book           Whitemuths C Compiler         2.1         8080         60K           BUG, ABUG Debuggers         3.20         280         24K           RASIC C Compiler         2.08         8080         32K           CBS Applications Builder         1.31         8080         42K           CIS COBOL Compiler         1.66         8080         32K           CIS COBOL Compiler         1.66         8080         42K           COBOL-80 COBULS M/SORT         1.16.a         8080         42K           COBOL-80 COPUS M/SORT         4.01         8080         48K           COBOL-80 Compiler         2.3         8080         48K           COBOL-80 Compiler         2.3         8080         48K           CATAST AR Information Manager         1.01         2.38         8080         48K           Datebook1         2.38         8080         48K         Needs 80x24 terminal, N/A for CDOS, CP/M-80 1.4, MP/M-80           Databook1         2.38         8080         48K         Needs 80x24 terminal, N/A for CDOS, CP/M-80 1.4, MP/M-80           Destal Man                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |            |          |      | Needs 2/5- drives w/ nint 200k eden, a fed con prime     |
| DBS C Commile         146         9000         32K         w/C book           Writtermitts C compiler         2.1         8080         60K           STMS         1.2         8080         24K           Writtermitts C compiler         2.08         24K         w/CE book           CBS Applications Builder         1.33         8080         43K           CBS Applications Builder         1.33         8080         43K           CIS COBOL Compiler         4.4.1         8080         48K           CIS COBOL Commoder         3.46         8080         CP/M-80 1.41 or 2.XX           CONDOR II         2.06         8080         48K           COBOL-60 PUIS M/SORT         4.01         8080         CP/M-80 1.41 or 2.XX           CONDOR II         2.06         8080         48K           CONDOR II         2.06         8080         48K           Catabookil         1.4         280         Aast           Datebookil         2.04         8080         48K           Datebookil         2.38         8080         48K           Dental Management System 9000         2.1A         8080         48K           Dental Management System 9000         2.06         8080 <td>BOSS Demo</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BOSS Demo                            |            |          |      |                                                          |
| Whitesmiths C Compiler         2.1         8080         60K           BTMS         1.2         8080         24K           BUG, ABUG Debuggers         3.20         Z80         24K           CBASIC Compiler         2.08         8000         34K           CBS Applications Builder         1.33         8080         44K           CBS CABCL Compiler         4.4         8080         20K           CIS COBOL Compiler         4.4         8080         20K           CIS COBOL Compiler         4.6         8080         20K           Interface for Mits QD Printer         4.6         8080         48K           COBOL-80 COBDIE of Compiler         4.6         8080         48K           COBOL-80 Compiler         4.6         8080         48K           Carsstalk         Needs B0x24 terminal, N/A for CDOS, CP/M-80 1.4, MP/M-80         2.38           Datebook-11         2.38         8080         48K           Dental Management System 9000         2.0         8080         48K           DistILC Z80 Poilsasembler         4.0         Z80         280           Documater Plus         1.4         8080         36K           Documater Plus         1.5         8080 <td< td=""><td></td><td></td><td></td><td></td><td>w/'C' book</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |            |          |      | w/'C' book                                               |
| BSTMS       1.2       9080       24k         BUG/uBUG Debuggers       3.20       280       32k         CBS Applications Builder       1.3       8090       42k         CBS Applications Builder       4.41       8090       32k         CBS Applications Builder       4.41       8090       32k         CBS Applications Builder       4.46       8090       32k         FRNGBOL Complet       3.46       8090       32k         CBS Applications Builder       1.16.a       8090       32k         FRNGBOL Complet       1.66       8080       48k         COBOL-80 Complet       4.6       8080       48k         COBOL-80 Complet       2.06       8080       48k         COBOL-80 Complet       2.06       8080       48k         COBOL-80 Complet       2.03       8080       48k         COBOL-80 Complet       2.04       8080       48k         Cobol-80 Complet       2.03       8080       48k         Cobol-80 Complet       2.04       8080       48k         Catastrakers       1.4       2.00       2.00         Datebook-11       2.03       8080       48k         Datebook-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Whitesmiths' C Compiler              |            |          |      |                                                          |
| Discription         2.68         9080         32K         w/CRUNC2, 204P, & 2.39)           CBS Applications Builder         1.33         8080         48K         Needs no support language           CBS COBOL Compiler         4.4.1         8080         48K         Needs no support language           CBS COBOL Compart         3.46         8080         32K         Needs no support language           CDS COBOL Compiler         4.6         8080         CP/M-80 1.41 or 2.XX           COBOL-80 CDUS M/SORT         4.01         8080         48K           COBOL-80 CDUS M/SORT         4.01         8080         48K           COBOL-80 CDUS M/SORT         4.01         8080         48K           COBOL-80 CDUS M/SORT         1.01         8080         48K           COBOL-80 CDUS M/SORT         2.04         8080         48K           DATASTAR Information Manager         1.01         8080         48K           Datebook-11         2.38         8080         48K           Detail Management System 9000         2.7A         8080         48K           Detail Management System 9000         2.1A         8080         36K           DISTEL 200 (M80 Disasembler         4.0         2.02         8080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      |            |          |      |                                                          |
| CBSAD2_Complet         1.33         9080         48K         Needs no support language           CBSAD2_Complet         3.46         8080         32K           CGSC0ROL_Complet         3.46         8080         32K           CORNS 12 CIS COBOL Form Generator         1.1.6a         8080         CP/M-80 1.41 or 2.XX           COBOL-80 Compiler         4.6         8080         48K           COBOL-80 Compiler         2.06         8080         48K           COBOL-80 Compiler         2.06         8080         48K           COBOL-80 Compiler         2.03         8080         48K           COBOL-80 Compiler         2.04         8080         48K           Corsstalk         1.4         2.00         8080         48K           Datebookil         2.01         8080         48K         Needs CBASIC           Date Management System 8000         8.7A         8080         48K         Needs CBASIC           Demial Management System 8000         2.7A         8080         210<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BUG/uBUG Debuggers                   |            |          |      | w/CRUN(2.204P. & 238)                                    |
| CBS / Applications Durble         4.1         8080         48K           CIS COBOL Compiler         3.46         8080         32K           COBOL-SO Compiler         6.6         8080         CP/M-80 1.41 or 2.XX           COBOL-SO Compiler         4.6         8080         48K           CONDOR II         2.06         8080         48K           CATASTAR Information Manager         1.101         8080         48K           Datebook-II         2.33         8080         48K           Detail Management System 9000         2.7A         8090         48K           Detail Management System 9000         2.7A         8090         48K           Detail Management System 9000         2.7A         8090         48K           Distlic C 2.00 Disassembler         1.4         8080         36K           Decimate/Nia         1.4         8080         36K           Decimate/Nia         1.5         8080         36K           Discric L 2.00/9000 Disassembler         1.4         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CBASIC2 Compiler                     |            |          |      |                                                          |
| CIB COBOL Compact         3.46         8080         32K           CORMS 12 IS COBOL Form Generator         1.66         8080         CP/M-80 1.41 or 2.XX           COBOL-80 Compiler         6.6         8080         48K           COBOL-80 Compiler         2.06         8080         48K           COBOL-80 List SQP DILIS M/SORT         4.6         8080         48K           COBOL-80 List Acct'ng)         2.3         8080         48K           Corstalk         1.4         Z80         7.04         8080         48K           DataSTAR Information Manager         1.01         8080         48K         Needs 80x24 terminal, N/A for CDOS, CP/M-80 1.4, MP/M-80           BASE-II         2.38         8080         48K         Needs CBASIC         Needs CBASIC           Dental Management System 8000         2.0         8080         48K         Needs CBASIC         Needs CBASIC           DestPOOL Print Spooler         2.1A         8080         36K         Needs CBASIC         Needs CBASIC           Distret Z80 k0800 Disassembler         4.0         280         36K         Needs CBASIC           Documate/Plus/Demo         1.5         8080         36K         Needs RM COS, 2-way TRS-80 Mod I, TRSDOS to Mod I CP/M-80           FLETRAN </td <td>CBS Applications Builder</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CBS Applications Builder             |            |          |      |                                                          |
| CORMS 1 CIS COBOL Form Generator         1.0.6         8080           CORMS 2 CIS COBOL Form Generator         1.1.6a         8080         CP/M-80 1.41 or 2.XX           COBOL-80 Compiler         4.6         8080         48K           COBOL-80 CPLUS M/SORT         4.01         8080         48K           CONDOR II         2.06         8080         48K           CONStalk         1.4         Z60           Corostalk         1.4         Z60           DATAST AR Information Manager         1.101         8080         48K           Datebook-II         2.38         8080         48K           Dental Management System 9000         2.7A         8080         48K           Dental Management System 9000         2.0         8080         36K           Documate/Plus / Demo         1.5         8080         36K           Documate/Plus / Demo         1.5         8080         32K           FLETRAN         1.0         8086         32K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      |            |          | 32K  |                                                          |
| Charace for Mite Q20 Printer         CP/M-801.41 or 2.XX           COBIL-80 PLUS M/SORT         4.6         8080         48K           COBIL-80 PLUS M/SORT         4.01         8080         48K           COBIL-80 PLUS M/SORT         2.3         8080         48K           CONDOR II         2.06         8080         48K           Constair         1.4         Z80           Data SER         1.4         Z80           Data SER         2.04         8080         48K           Data Seriel         2.04         8080         48K           Dental Management System 9000         2.7A         8080         48K           Dental Management System 9000         2.0         8080         36K           Documate/Plus / Demo         1.5         8080         36K           Documate/Plus / Demo         1.5         8080         32K           FLETRAN         1.4         8080         32K           FLETRAN         1.0         80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FORMS 1 CIS COBOL Form Generator     |            |          |      |                                                          |
| Interface for Mils Q/0 Frinter         4.6         8080         48K           COBOL-80 PLUS M/SORT         4.01         8080         48K           CONDOR II         2.06         8080         64K           CORDARD PLUS M/SORT         2.3         8080         64K           CONDOR II         2.04         8080         48K           DATASTAR Information Manager         1.01         8080         48K           Datebook-II         2.38         8080         48K           Dental Management System 8000         8.7A         8080         48K           Dental Management System 9000         2.0         8080         48K           Dental Management System 9000         2.0         8080         48K           Dental Management System 9000         2.0         8080         48K           Documate/Plus / Deno         1.5         8080         36K           Documate/Plus / Deno         1.5         8080         36K           Documate/Plus / Deno         1.6         8080         32K           EDIT Text Editor         2.02         8080         32K           FABS1 I         4.15         8080         36K           FLETRAN         1.4         32K         I-way T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FORMS 2 CIS COBOL Form Generator     | 1.1,6a     | 8080     |      | CP/M-80 1 41 or 2 XX                                     |
| CDB01-20 CDILUS M/SORT         1:01         3080         48K           CONDOR II         2.6         8080         64K         CBASIC needed           CONDOR II         2.3         8080         64K         CBASIC needed           Crosstalk         1.4         2.06         8080         48K           Data ST AR Information Manager         1.01         8080         48K           Data ST AR Information Manager         2.04         8080         48K           Data St TAR Information Manager         2.38         8080         48K           Dental Management System 8000         2.0         8080         48K           Dental Management System 9000         2.0         8080         48K           Distroc Z80 Disassembler         4.0         Z80         Z10g mnemonics           DISTEL Z80 /6808 Disassembler         4.0         Z80         Z10g mnemonics           Documate/Plus /91s/Demo         1.4         8080         36K           Documate/Plus /91s/Demo         2.06         280         280           EDIT-80 creat Editor         2.02         8080         36K           FILETRAN         1.5         32K         1-way TRS-80 Mod 1, TRSDOS to Mod 1 CP/M-80           FILETRAN         1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Interface for Mits Q70 Printer       | 16         | 8080     | 48K  |                                                          |
| CONDOR II         2.06         8080         44K         CBASIC needed           CREAM (Real Estate Acct'ng)         2.3         8080         64K         CBASIC needed           Crosstalk         1.4         280         64K         Needs 80x24 terminal, N/A for CDOS, CP/M-80 1.4, MP/M-80           Datt AST AR Information Manager         1.01         8080         48K         Needs 80x24 terminal, N/A for CDOS, CP/M-80 1.4, MP/M-80           Data Management System 8000         2.0         8080         48K         Needs CBASIC           Dental Management System 9000         2.0         8080         48K         Needs CBASIC           Dental Management System 9000         2.0         8080         48K         Needs CBASIC           Dental Management System 9000         2.0         8080         28K         Needs CBASIC           DiSTEL 200 (680 Disassembler         4.0         8080         26K         210g nnemonics           Documate/Plus (Demo         1.5         8080         26K         210g nnemonics         210 estensions           Documate/Plus (Demo         1.5         8080         32K         1-way TRS-80 Mod I, TRSDOS to Mod I CP/M-80           FILETRAN         1.01         8086         56K         Needs TRSDOS, 2-way TRS-80 Mod I, TRSDOS to Mod II CP/M-80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | COBOL-80 Compiler                    |            |          |      |                                                          |
| CREAM (Real Estate Acct'ng)         2.3         8080         64K         CBASIC needed           Crosstalk         1.4         Z80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |            |          |      |                                                          |
| Crosstalk         1.4         280           DATASTRA Information Manager         1.101         8080         48K           Datebook-II         2.04         8080         48K           dBASE-II         2.38         8080         48K           dBASE-II         2.38         8080         48K           Dental Management System 9000         2.0         8080         48K           Dental Management System 9000         2.0         8080         48K           DislLOC Zob Disassembler         4.0         280         Zilog mnemonics           Distret Zab /8080 Disassembler         4.0         280         Zilog mnemonics           Documate/Plus         1.4         8080         36K           Documate/Plus/Demo         1.5         8080         228           EDIT Text Editor         2.06         Z80         Specify operating system: IBM PC/CPM-86/M5-DOS           FABS1I         4.15         8080/Z80         32K         1-way TRS-80 Mod I_TRSDOS to Mod I_CP/M-80           FILETRAN         1.4         32K         Needs TRSDOS_2-way TRS-80 Mod I_TRSDOS         & Mod II CP/M-80           FILETRAN         1.4         32K         Needs RM/COBOL. Runs w/CP/M-80, OASIS, UNIX           Financial Modeling System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      | 2.3        |          | 64K  | CBASIC needed                                            |
| Databook-II         2.04         8080         48K           Databook-II         2.38         8080         48K           dBASE-II         2.38         8080         48K           dBASE-II Demo         2.38         8080         48K           Dental Management System 8000         8.7A         8080         48K           Dental Management System 8000         8.7A         8080         48K           Dental Management System 8000         2.0         8080         48K           DislLGC Z0D Disassembler         4.0         8080         48K           Documate/Plus/Demo         1.5         8080         260           DDIT Text Editor         2.06         Z80         286           EDIT Text Editor         2.02         8080         28K           FABS-I         4.15         8080/Z80         32K           FILETRAN         1.4         32K         I-way TRS-80 Mod I, TRSDOS to Mod I CP/M-80           Financial Modeling System         2.0         8080         36K           FORTRAN-80 Compiler         3.44         8080         36K           FinalWord         1.0         8080/Z80         36K           FORTRAN-80 Compiler         3.44         8080 <td< td=""><td>Crosstalk</td><td></td><td></td><td>IOV</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Crosstalk                            |            |          | IOV  |                                                          |
| DateWork         2.3B         8080         48K           dBASE-II         2.3B         8080         48K           dBASE-II         2.3B         8080         48K           dBASE-II         2.3B         8080         48K           dBASE-II         Demtal Management System 8000         8.7A         8080         48K           Dental Management System 9000         2.0         8080         48K         Needs CBASIC           DESPOOL Print Spooler         2.1A         8080         36K         Distre L200 / Print Spooler         2.1A           Documate/Plus         1.4         8080         36K         Documate/Plus/Demo         1.5         8080           Documate/Plus         1.4         8080         36K         Specify operating system: IBM PC/CPM-86/MS-DOS           EDIT Fext Editor         2.02         8080         32K         +way TRS-80 Mod I, TRSDOS to Mod I CP/M-80           FABS II         4.15         8080/Z80         48K         -way TRS-80 Mod I, TRSDOS to Mod I CP/M-80           FILETRAN         1.5         32K         1-way TRS-80 Mod I, TRSDOS to Mod I CP/M-80           Finankord         1.0         8080         48K           Finankord         1.0         8080         64K <tr< td=""><td></td><td></td><td></td><td></td><td>Needs 80x24 terminal, N/A for CDOS, CP/M-80 1.4, MP/M-80</td></tr<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |            |          |      | Needs 80x24 terminal, N/A for CDOS, CP/M-80 1.4, MP/M-80 |
| dBASE-ii       Demo       2.38       8080       48K         Dental Management System 8000       8.7A       8080       48K       Needs CBASIC         Dental Management System 9000       2.0       8080       48K       Needs CBASIC         DESILOG Z80 Disassembler       4.0       280       Intel mnemonics         DISILOG Z80 Disassembler       4.0       8080       Intel mnemonics         Documate/Plus/Demo       1.5       8080       Intel mnemonics         Documate/Plus/Demo       1.5       8080       Specify operating system: IBM PC/CPM-86/MS-DOS         EM 80/86       1.01       8086       Specify operating system: IBM PC/CPM-86/MS-DOS         EM 80/86       1.01       8080       32K         FABS-1       2.7       8080       32K         FABS II       4.15       8080/Z80       48K         FILETRAN       1.20       32K       1-way TRS-80 Mod I, TRSDOS to Mod I CP/M-80         Financial Modeling System       2.0       48K       Needs RM/COBOL. Runs w/CP/M-80, OP/M-80         Financial Modeling System       2.0       48K       Runs under CP/M-80, OP/M-80, OF/M-80, OASIS, UNIX         For RTRAN-80 Compiler       3.44       8080       56K         FPL 56K Vers.       2.6 <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |            |          |      |                                                          |
| Dental Management System 8000         8.7A         8080         48K         Needs CDASIC           Dental Management System 9000         2.0         8080         48K         Needs CBASIC           DESPOOL Print Spooler         2.1A         8080         Intel mnemonics           DISTEL Z60/0800 Disassembler         4.0         Z80         Intel mnemonics           Documate/Plus         1.4         8080         Jack           Documate/Plus/Demo         1.5         8080         Jack           EDIT Text Editor         2.06         Z80         Jack           FABS-I         2.7         8080         32K           FABS-I         2.7         8080/Z80         48K           FILETRAN         1.20         32K         1-way TRS-80 Mod I, TRSDOS to Mod I CP/M-80           FILETRAN         1.4         32K         1-way TRS-80 Mod I, TRSDOS to Mod I CP/M-80           FinalWord         1.4         32K         1-way TRS-80 Mod I, TRSDOS to Mod II CP/M-80           Financial Modeling System         2.0         48K         Needs CM/MS-80           FORTRAN-80 Compiler         3.44         8080         36K           FPL 56K Vers.         2.6         8080         56K           FPL 48k Vers.         2.6 <td></td> <td></td> <td></td> <td></td> <td>N. I. CRICIC</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                      |            |          |      | N. I. CRICIC                                             |
| Dental Management System 9000         2.0         8080         48K         Needs CD/DEC           DESPOOL Print Spooler         2.1A         8080         Zilog mnemonics           DISIL OG 280 Disassembler         4.0         8080/280         Intel mnemonics           Documate/Plus         1.4         8080         36K           Documate/Plus/Demo         1.5         8080         36K           DDIT Text Editor         2.06         Z80         Specify operating system: IBM PC/CPM-86/MS-DOS           EDIT Text Editor         2.02         8080         32K           FABS-1         2.7         8080         32K           FABS-1         4.15         8080/Z80         48K           FILETRAN         1.20         32K         1-way TRS-80 Mod I, TRSDOS to Mod I CP/M-80           FILETRAN         1.4         32K         1-way TRS-80 Mod I, TRSDOS to Mod I CP/M-80           FinalWord         1.0         8080         36K           Financial Modeling System         2.0         48K           FORTHAN-80 Compiler         3.44         8080         36K           FORTHAN-80 Compiler         3.44         8080         36K           FORTHAN-80         2.6         8080         36K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dental Management System 8000        |            |          |      |                                                          |
| Dist OCL 1 mit Opticity       4.0       280       Zilog mnemonics         Dist Core Z80 Disassembler       4.0       8080/Z80       Jate 280         Documate/Plus       1.4       8080       36K         Documate/Plus/Demo       1.5       8080       Jate 280         EDIT Text Editor       2.06       Z80       EDIT 100 Text Editor       2.02         EDIT Text Editor       2.02       8080       32K         FABS-1       2.7       8080       32K         FABS-1       2.7       8080       32K         FILETRAN       1.20       32K       Needs TRSDOS to Mod I, TRSDOS to Mod I CP/M-80         FILETRAN       1.20       32K       Needs TRSDOS to Mod I, TRSDOS to Mod I CP/M-80         FinalWord       1.0       8080       56K       Runs under CP/M-80, CP/M-80 or IBM PC DOS         Financial Modeling System       2.0       48K       Needs RM/COBOL. Runs w/CP/M-80, OASIS, UNIX         FPL 48K Vers.       2.6       8080       36K         General Ledger/Cybernetics       1.0       8080/Z80       56K         General Ledger/Pachtree       07-13-80       8080       48K         General Ledger/Prachtree       07-13-80       8080       48K         General                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dental Management System 9000        |            |          | 481  | Needs CDASIC                                             |
| Districtor 280/8080 Disassembler       4.0       8080/Z80       Intel mnemonics, TDL extensions         Districtor 280/8080 Disassembler       1.4       8080       36K         Documate/Plus Demo       1.5       8080       36K         EDIT Text Editor       2.06       Z80       Specify operating system: IBM PC/CPM-86/MS-DOS         EDIT Text Editor       2.02       8080       32K         FABS-1       2.7       8080       32K         FABS II       4.15       8080/Z80       48K         FILETRAN       1.20       32K       1-way TRS-80 Mod I, TRSDOS to Mod I CP/M-80         FILETRAN       1.4       32K       Needs TRSDOS. 2-way TRS-80 Mod I, TRSDOS to Mod I CP/M-80         Financial Modeling System       2.0       8080       36K         FORTRAN-80 Compiler       3.44       8080       36K         FPL 56K Vers.       2.6       8080       48K         FORTRAN-80 Compiler       3.44       8080       36K         FPL 48K Vers.       2.6       8080       48K         General Ledger/Cybernetics       6       8080       48K         General Ledger/MC       1.0       8080/Z80       56K         General Ledger/Structured Sys       1.4C       8080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DESPOOL Print Spooler                |            |          |      | Zilog mnemonics                                          |
| Documate/Plus         1.4         8080         36K           Documate/Plus/Demo         1.5         8080           EDIT Text Editor         2.06         Z80           EDIT-80 Text Editor         2.02         8080           EDIT-80 Text Editor         2.02         8080           EDIT-80 Text Editor         2.02         8080           EM 80/86         1.01         8086           FABS-1         2.7         8080         32K           FILETRAN         4.15         8080/Z80         48K           FILETRAN         1.4         32K         1-way TRS-80 Mod I, TRSDOS to Mod I CP/M-80           FILETRAN         1.4         32K         1-way TRS-80 Mod I, TRSDOS to Mod I CP/M-80           Finamicial Modeling System         1.0         8080         56K           FORTH (Timin)         3.5         8080         36K           FORTRAN-80 Compiler         3.44         8080         36K           FPL 48K Vers.         2.6         8080         56K           General Ledger/Cybernetics         6eneral Ledger/Cybernetics         Needs RM/COBOL. Runs w/CP/M-80, OASIS, UNIX           General Ledger/Preachtree         07-13-80         8080         48K         Needs BASIC-80 4.51           <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DISTEL 780/8080 Disassembler         |            |          |      | Intel mnemonics, TDL extensions                          |
| Documate/Plus/Demo         1.5         0000           EDIT Text Editor         2.06         280           EDIT Text Editor         2.02         8080           FABS-1         2.7         8080         32K           FABS-1         2.7         8080         32K           FABS-1         2.7         8080/Z80         48K           FILETRAN         1.20         32K         1-way TRS-80 Mod I, TRSDOS to Mod I CP/M-80           FILETRAN         1.20         32K         Needs TRSDOS. 2-way TRS-80 Mod I, TRSDOS           FILETRAN         1.4         32K         Needs TRSDOS. 2-way TRS-80 Mod I, TRSDOS to Mod I CP/M-80           FinalWord         1.0         8080         56K         Runs under CP/M-80, CP/M-80 or IBM PC DOS           Financial Modeling System         2.0         48K         1-way TRS-80 Mod II, TRSDOS to Mod II CP/M-80           FORTH (Timin)         3.5         8080         28K           FORTRAN-80 Compiler         3.44         8080         36K           FPL 56K Vers.         2.6         8080         48K           General Ledger/Cybernetics         Needs RM/COBOL. Runs w/CP/M-80, OASIS, UNIX           General Ledger/Peachtree         07-13-80         8080         48K           General Led                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Documate/Plus                        |            |          | 36K  |                                                          |
| EDIT FOX Text Editor       2.02       8080         EDIT FOX Text Editor       2.02       8080         EDIT FOX Text Editor       2.02       8080         EM 80/86       1.01       8086         FABS-I       2.7       8080       32K         FABS II       4.15       8080/Z80       48K         FILETRAN       1.20       32K       1-way TRS-80 Mod I, TRSDOS to Mod I CP/M-80         FILETRAN       1.4       32K       Needs TRSDOS. 2-way TRS-80 Mod I, TRSDOS to Mod I CP/M-80         FILETRAN       1.4       32K       Needs TRSDOS. 2-way TRS-80 Mod I, TRSDOS to Mod I CP/M-80         Financial Modeling System       1.0       8080       56K         FORTH (Timin)       3.5       8080       28K         FORTRAN-80 Compiler       3.44       8080       36K         FPL 56K Vers.       2.6       8080       56K         General Ledger/Cybernetics       2.6       8080       48K         General Ledger/Peachtree       07-13-80       8080       48K         General Ledger/Structured Sys       1.4       8080       56K         General Ledger II/CPaids       1.1       8080       48K       Needs BASIC-80 4.51         General Ledger II/CPaids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Documate/Plus/Demo                   |            |          |      |                                                          |
| EM 80/86       1.01       8086       Specify operating system: IBM PC/CPM-86/MS-DOS         FABS-I       2.7       8080       32K         FABS II       4.15       8080/Z80       48K         FILETRAN       1.20       32K       1-way TRS-80 Mod I, TRSDOS to Mod I CP/M-80         FILETRAN       1.4       32K       1-way TRS-80 Mod I, TRSDOS to Mod I CP/M-80         FileTRAN       1.4       32K       1-way TRS-80 Mod I, TRSDOS to Mod I CP/M-80         FinalWord       1.0       8080       56K       Runs under CP/M-80, CP/M-86 or IBM PC DOS         Financial Modeling System       2.0       48K       1-way TRS-80 Mod I, TRSDOS to Mod II CP/M-80         FORTRAN-80 Compiler       3.44       8080       36K         FPL 56K Vers.       2.6       8080       36K         FPL 48K Vers.       2.6       8080       48K         General Ledger/Cybernetics       1.0       8080/Z80       56K         General Ledger/MC       1.0       8080       48K         General Ledger/MC       1.0       8080       48K         General Ledger II/CPaids       1.1       8080       48K         General Ledger II/CPaids       1.1       8080       48K         General Ledger II/CPaids </td <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                      |            |          |      |                                                          |
| EVR 00/002.7808032KFABS-I2.7808032KFABS II4.158080/Z8048KFILETRAN1.2032K1-way TRS-80 Mod I, TRSDOS to Mod I CP/M-80FILETRAN1.432KNeeds TRSDOS. 2-way TRS-80 Mod I, TRSDOSFILETRAN1.432K1-way TRS-80 Mod I, TRSDOS to Mod II CP/M-80FinalWord1.0808056KFinancial Modeling System2.048KFORTH (Timin)3.5808028KFORTRAN-80 Compiler3.44808036KFPL 48K Vers.2.6808048KGeneral Ledger/Cybernetics7.13-80808048KGeneral Ledger/MC1.0808056KGeneral Ledger/MC1.1808048KGeneral Ledger/II/CPaids1.1808048KGeneral Ledger/II/CPaids1.1808056KGeneral Ledger/II/CPaids1.1808056KGLECTOR Accounting System2.02808056KGLECTOR IV Accounting System1.0808056KGLECTOR IV Accounting System1.08080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |            |          |      | Specify operating system: IBM PC/CPM-86/MS-DOS           |
| FABS II4.158080/Z8048K<br>32K1-way TRS-80 Mod I, TRSDOS to Mod I CP/M-80FILETRAN1.2032KNeeds TRSDOS. 2-way TRS-80 Mod I, TRSDOS<br>& Mod I CP/M-80FILETRAN1.432KNeeds TRSDOS. 2-way TRS-80 Mod I, TRSDOS<br>& Mod I CP/M-80FILETRAN1.532K1-way TRS-80 Mod I, TRSDOS to Mod II CP/M-80FinalWord1.0808056KRuns under CP/M-80, CP/M-86 or IBM PC DOSFinalWord2.048KFORTHAN-80 Compiler3.44808036KFPL 56K Vers.2.6808056KGeneral Ledger/Cybernetics2.6808048KGeneral Ledger/MC1.08080/Z8056KGeneral Ledger/MC1.0808052KGeneral Ledger/MC1.0808048KGeneral Ledger/MC1.1808048KGeneral Ledger/II/CPaids1.1808048KGLECTOR Accounting System2.02808056KGLECTOR VAccounting System1.0808056KGLECTOR IV Accounting System1.08080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      |            |          |      |                                                          |
| FILETRAN1.2032KFWay IRS-80 Mod I, TRSDOSFILETRAN1.432KNeeds TRSDOS. 2-way TRS-80 Mod I, TRSDOSFILETRAN1.432KNeeds TRSDOS. 2-way TRS-80 Mod II, TRSDOSFinalWord1.532K1-way TRS-80 Mod II, TRSDOS to Mod II CP/M-80FinalWord1.0808056KFinancial Modeling System2.048KFORTH (Timin)3.5808028KFORTH (Timin)3.44808036KFPL 56K Vers.2.6808056KFPL 48K Vers.2.6808048KGeneral Ledger/Cybernetics1.08080/Z8056KGeneral Ledger/MC1.08080/Z8056KGeneral Ledger/MC1.4C808052KGeneral Ledger/Structured Sys1.4C808052KGeneral Ledger II/CPaids1.1808048KGLECTOR Accounting System2.02808056KGLECTOR IV Accounting System1.08080Craft Lub1.08080Graft Laber1.08080GLECTOR IV Accounting System1.0GLECTOR IV Accounting System1.0Craft Lub1.0Requires 180Kb/drive. Available for certain Terminals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FABS II                              | 4.15       | 8080/Z80 |      | THE POMALI TREDOS to Mod I CP/M-80                       |
| FILE IRAN1.1& Mod I CP/M-80FILETRAN1.532K1-way TRS-80 Mod II, TRSDOS to Mod II CP/M-80FinalWord1.0808056KRuns under CP/M-80, CP/M-86 or IBM PC DOSFinancial Modeling System2.048KFORTH (Timin)3.5808028KFORTRAN-80 Compiler3.44808036KFPL 56K Vers.2.6808056KFPL 48K Vers.2.6808048KGeneral Ledger/Cybernetics1.08080/Z8056KGeneral Ledger/Peachtree07-13-80808048KGeneral Ledger/Structured Sys1.4C808052KGeneral Ledger II/CPaids1.1808048KGLECTOR Accounting System2.02808056KGLECTOR IV Accounting System1.0808056KGrant Ledger II/CPaids1.1808048KGLECTOR IV Accounting System1.0808056KGrant Ledger II/CPaids1.1808048KGLECTOR IV Accounting System1.08080Grant Ledger II/CPaids1.08080Guerral Ledger II/CPaids1.0GLECTOR IV Accounting System1.0Grant Ledger II/CPaids1.0Hot1.0Hot1.0Hot1.0Hot1.0Hot1.0Hot1.0Hot1.0Hot1.0Hot1.0Hot1.0Hot1.0Hot <td></td> <td></td> <td></td> <td></td> <td>Needs TRSDOS 2-way TRS-80 Mod I TRSDOS</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                      |            |          |      | Needs TRSDOS 2-way TRS-80 Mod I TRSDOS                   |
| FILETRAN1.532K1-way TRS-80 Mod II,TRSDOS to Mod II CP/M-80FinalWord1.0808056KRuns under CP/M-80, CP/M-86 or IBM PC DOSFinancial Modeling System2.048KFORTH (Timin)3.5808028KFORTH Sch Vers.2.6808036KFPL 48K Vers.2.6808048KGeneral Ledger/Cybernetics1.08080/Z8056KGeneral Ledger/MC1.08080/Z8056KGeneral Ledger/Fractured Sys1.4C808030KGeneral Ledger/Structured Sys1.4C808052KGeneral Ledger II/CP aids1.1808048KGeneral Ledger II/CP aids1.1808048KNeeds SASIC-80 4.511.1808048KNeeds SELECTOR IV Accounting System2.028080GLECTOR IV Accounting System3.028080Cract Calk1.0808056KHorizontial Cale1.0Requires 180Kb/drive. Available for certain Terminals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FILETRAN                             | 1.4        |          | 32K  | & Mod I CP/M-80                                          |
| FinalWord1.0808056KRuns under CP/M-80, CP/M-86 or IBM PC DOSFinancial Modeling System2.048KFORTH (Timin)3.5808028KFORTRAN-80 Compiler3.44808036KFPL 56K Vers.2.6808048KGeneral Ledger/Cybernetics2.6808048KGeneral Ledger/MC1.08080/Z8056KNeeds RM/COBOL. Runs w/CP/M-80, OASIS, UNIXGeneral Ledger/Feachtree07-13-80808048KNeeds BASIC-80 4.51General Ledger/Structured Sys1.4C808052Kw/It Works PackageGeneral Ledger II/CPaids1.1808048KNeeds BASIC-80 4.51GLECTOR Accounting System2.02808056KUse w/CBASIC2, SELECTOR IVGLECTOR IV Accounting System1.0808056KNeeds SELECTOR IVRequires 180Kb/drive. Available for certain Terminals1.0808056K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FU FTD AN                            | 15         |          | 32K  | 1-way TRS-80 Mod II TRSDOS to Mod II CP/M-80             |
| Financial Modeling System2.048KFinancial Modeling System3.5808028KFORTH (Timin)3.5808028KFORTRAN-80 Compiler3.44808036KFPL 56K Vers.2.6808056KFPL 48K Vers.2.6808048KGeneral Ledger/Cybernetics1.08080/Z8056KGeneral Ledger/Peachtree07-13-80808048KGeneral Ledger/Peachtree07-13-80808048KGeneral Ledger/Structured Sys1.4C808052KGeneral Ledger II/CPaids1.1808048KGLECTOR Accounting System2.02808056KGLECTOR IV Accounting System1.0808056KGeneral Ledger II/CPaids1.0808056KMathematical Ledger II/CPaids1.08080GLECTOR IV Accounting System1.08080Grader Conting System1.08080Grader Conting System1.0Grader Conting System </td <td></td> <td></td> <td>8080</td> <td></td> <td>Runs under CP/M-80, CP/M-86 or IBM PC DOS</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                      |            | 8080     |      | Runs under CP/M-80, CP/M-86 or IBM PC DOS                |
| FORTH (Timin)3.5808025KFORTRAN-80 Compiler3.44808036KFPL 56K Vers.2.6808056KFPL 48K Vers.2.6808048KGeneral Ledger/Cybernetics1.08080/Z8056KGeneral Ledger/MC1.08080/Z8056KGeneral Ledger/Peachtree07-13-80808048KGeneral Ledger/Structured Sys1.4C808052KGeneral Ledger II/CPaids1.1808048KGLECTOR Accounting System2.02808056KGLECTOR IV Accounting System1.0808056KUE1.0808056KNeeds BASIC-80 4.511.0Requires 180Kb/drive. Available for certain Terminals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      |            |          |      |                                                          |
| FPL 56K Vers.2.6808056KFPL 48K Vers.2.6808048KGeneral Ledger/Cybernetics1.08080/Z8056KGeneral Ledger/MC1.08080/Z8056KGeneral Ledger/Feachtree07-13-80808048KGeneral Ledger/Structured Sys1.4C808052KGeneral Ledger II/CPaids1.1808048KGLECTOR Accounting System2.02808056KGLECTOR IV Accounting System1.08080Credit Counting System1.08080Credit Counting System1.0Credit Counting Syst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FORTH (Timin)                        |            |          |      |                                                          |
| FPL bok Vers.2.6808048KGeneral Ledger/Cybernetics1.08080/Z8056KNeeds RM/COBOL. Runs w/CP/M-80, OASIS, UNIXGeneral Ledger/MC1.08080/Z8056KNeeds BASIC-80 4.51General Ledger/Factured Sys1.4C808048KNeeds BASIC-80 4.51General Ledger II/CPaids1.1808048KNeeds BASIC-80 4.51GLECTOR Accounting System2.02808056KUse w/CBASIC2, SELECTOR IIIGLECTOR IV Accounting System1.0808076KNeeds BASIC-80 4.51GreeTalk1.01.0808076KNeeds BASIC-80 4.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FORTRAN-80 Compiler                  |            |          |      |                                                          |
| General Ledger/CyberneticsNeeds RM/COBOL. Runs w/CP/M-80, OASIS, UNIXGeneral Ledger/MC1.08080/Z8056KNeeds CP/M-80 2.2 or MP/M-80General Ledger/Peachtree07-13-80808048KNeeds BASIC-80 4.51General Ledger/Structured Sys1.4C808052Kw/It Works PackageGeneral Ledger II/CPaids1.1808048KNeeds BASIC-80 4.51GLECTOR Accounting System2.02808056KUse w/CBASIC2, SELECTOR IIIGLECTOR IV Accounting System1.08080KNeeds SELECTOR IVGreeTalk1.01.08080KNeeds SELECTOR IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |            |          |      |                                                          |
| General Ledger/MC1.08080/28056KNeeds Cr/MF00/2.2 of Nir/MF00General Ledger/Peachtree07-13-80808048KNeeds BASIC-80 4.51General Ledger/Structured Sys1.4C808052Kw/It Works PackageGeneral Ledger II/CPaids1.1808048KNeeds BASIC-80 4.51GLECTOR Accounting System2.02808056KUse w/CBASIC2, SELECTOR IIIGLECTOR IV Accounting System1.08080Keeds SELECTOR IVGreeTalk1.08080Keeds SELECTOR IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FPL 48K Vers.                        | 2.0        | 0000     | IUIT |                                                          |
| General Ledger/Peachtree07-13-80808048KNeeds DASIC-80 4.51General Ledger/Structured Sys1.4C808052Kw/It Works PackageGeneral Ledger II/CPaids1.1808048KNeeds BASIC-80 4.51GLECTOR Accounting System2.02808056KUse w/CBASIC2, SELECTOR IIIGLECTOR IV Accounting System1.0808056KNeeds SELECTOR IVGreeTalk1.0808056KNeeds SELECTOR IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | General Ledger/MC                    | 1.0        | 8080/Z80 |      |                                                          |
| General Ledger/Structured Sys1.4C808052KW/It Works FackageGeneral Ledger II/CPaids1.1808048KNeeds BASIC-80 4.51GLECTOR Accounting System2.02808056KUse w/CBASIC2, SELECTOR IIIGLECTOR IV Accounting System1.08080Keeds SELECTOR IVGLECTOR IV1.08080Keeds SELECTOR IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | General Ledger/Peachtree             | 07-13-80   |          |      |                                                          |
| General Ledger II/Craids       11         GLECTOR Accounting System       2.02       8080       56K       Use w/CBASIC2, SELECTOR III         GLECTOR IV Accounting System       1.0       8080       Needs SELECTOR IV         GreeTalk       1.0       8080       Requires 180Kb/drive. Available for certain Terminals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | General Ledger/Structured Sys        |            |          |      |                                                          |
| GLECTOR IV Accounting System 1.0 8080<br>GLECTOR IV Accounting System 1.0 8080<br>CreeTalk 1.0 Requires 180Kb/drive. Available for certain Terminals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | General Ledger II/CPaids             |            |          |      | Use w/CBASIC2_SELECTOR III                               |
| GLECTOR IV Accounting System 1.0 Requires 180Kb/drive. Available for certain Terminals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GLECTOR Accounting System            |            |          | JUK  | Needs SELECTOR IV                                        |
| Printers, & Plotters.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                      |            | 0000     |      | Requires 180Kb/drive. Available for certain Terminals    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |            |          |      | Printers, & Plotters.                                    |

# **VERSION LIST**

| Product                                                                                 | S                | Р                   | MR         |                                                    |
|-----------------------------------------------------------------------------------------|------------------|---------------------|------------|----------------------------------------------------|
| HDBS                                                                                    | 1.05A            | +                   | 52K        |                                                    |
| HOE                                                                                     | 2.1              | 8080                | 48K        |                                                    |
| IBM/CPM                                                                                 | 1.1              | 8080                | IOIC       | CP/M 1.4 only!                                     |
| Insurance Agency System 9000                                                            | 1.08             | 8080                |            | Needs CBASIC                                       |
| Integrated Acctg Sys/Gen'l Ledger                                                       |                  | 8080                | 48K        | Needed for 3 pkgs. below                           |
| Integrated Acctg Sys/Accts Pyble                                                        |                  | 8080                | 48K        |                                                    |
| Integrated Acctg Sys/Accts Rcvble<br>Integrated Acctg Sys/Payroll                       |                  | 8080                | 48K        |                                                    |
| Interchange                                                                             |                  | 8080<br>Z80         | 48K        |                                                    |
| Inventory/MicroConsultants                                                              | 5.3              | 8080/Z80            | 32K<br>56K | Needs CP/M-80 2.2                                  |
| Inventory/Peachtree                                                                     | 07-13-80         | 8080                | 48K        | Needs BASIC-80 4.51                                |
| Inventory/Structured Sys                                                                | 1.0C             | 8080                | 52K        | w/It Works Package                                 |
| JANUS                                                                                   | 1.4.3            | Z80/8080            |            | Also runs w/8086                                   |
| Job Cost Control System/MC                                                              | 1.0              | 8080/Z80            | 56K        | Requires CP/M-80 2.2                               |
| JRT Pascal System                                                                       | 1.4              | 8080                | 56K        |                                                    |
| LETTERIGHT Text Editor<br>LINKER                                                        | 1.1B             | 8080                | 52K        |                                                    |
| LP-DISK                                                                                 | 1.0              | Z80<br>8080/Z80     | 48K        | Ales for TBC 80 L/III                              |
| MAC                                                                                     | 2.0A             | 8080                | 20K        | Also for TRS-80 I/III                              |
| MACRO-80 Macro Assembler Package                                                        | 3.43             | 8080/Z80            | 2010       |                                                    |
| MAG/base1 (LMS)                                                                         | 2.0.1            | 8080                | 56K        | Needs CBASIC, 2.06 or later & 180K/drive           |
| MAG/base2 (IMS)                                                                         | 2.0.1            | 8080                | 56K        | Needs CBASIC, 2.06 or later & 180K/drive           |
| MAG/base3 (ADS)                                                                         | 2.0.1            | 8080                | 56K        | Needs CBASIC, 2.06 or later & 180K/drive           |
| Magic Typewriter                                                                        | 3                | Z80                 | 48K        |                                                    |
| Magic Wand<br>MAG/sam3                                                                  | 1.11             | 8080                | 32K        |                                                    |
| MAG/sam3<br>MAG/sam4                                                                    | 4.2<br>1.1       | 8080                | 32K        | No. 1 CRACIC                                       |
| MAGSORT-C                                                                               | 1.1<br>1.0       | 8080                | 32K        | Needs CBASIC<br>For CBASIC                         |
| MAGSORT-M                                                                               | 1.0              |                     |            | For MBASIC                                         |
| MAGSORT-R                                                                               | 1.0              |                     |            | For Compilers — BASCOM, FORTRAN-80, PL/I-80        |
| MAILING ADDRESS Mail List System                                                        | 07-13-80         | 8080                | 48K        | Tor complets - briscow, rokikaiv-oo, r L/1-oo      |
| Mail-Merge                                                                              | 3.0              | 8080                |            |                                                    |
| Master Tax                                                                              | 1.0-80           | 8080                | 48K        |                                                    |
| Matchmaker<br>MDBS                                                                      | 1.05.4           | 8080                | 32K        |                                                    |
| MDBS-DRS                                                                                | 1.05A<br>1.02    | ++                  | 48K        |                                                    |
| MDBS-QRS                                                                                | 1.02             | +                   | 52K<br>52K |                                                    |
| MDBS-RTL                                                                                | 1.0              | +                   | 52K        |                                                    |
| MDBS-PKG                                                                                |                  | +                   | 52K        | w/all above MDBS products                          |
| Medical Management System 8000                                                          | 8.7a             | 8080                |            | Needs CBASIC                                       |
| Medical Management System 9000                                                          | 2.0              | 8080                |            | Needs CBASIC                                       |
| Microcosm                                                                               |                  | Z80                 |            | CP/M-80 2.X or MP/M-80                             |
| Micro-SEED<br>Microspell                                                                | B.10G            | 8080                |            |                                                    |
| Microspell Demo                                                                         | 4.3<br>1.0       | 8080                | 48K        | E D L O L                                          |
| Microstat                                                                               | 2.08a            | 8080<br><b>8080</b> | 48K        | For Dealers Only                                   |
| Microstat for Apple                                                                     | 2.0              | Z-80                | 401        | Needs BASIC-80, 5.03 or later                      |
| Mince                                                                                   | 2.6              | 8080                | 48K        |                                                    |
| Mince Demo                                                                              | 2.6              | 8080                | 48K        |                                                    |
| Mini-Warehouse Mngmt. Sys.                                                              | 5.5              | 8080                | 48K        | Needs CBASIC                                       |
| Money Maestro<br>MP/M-I                                                                 | 10               | 8080/Z80            | 48K        | CP/M-80 1.4 or 2.2                                 |
| MP/M-II                                                                                 | 1.0<br>2.0       | 8080                | 101/       |                                                    |
| Mr. EDit                                                                                | 2.0              | 8080<br>8080/Z80    | 48K<br>24K | Needs MP/M-80                                      |
| MSORT                                                                                   | 1.01             | 8080                | 48K        | Needs 24K TPA, 12 x 64 column terminal             |
| Mu LISP-80/Mu STAR Compiler                                                             | 2.12             | 8080                | HOIN       |                                                    |
| Mu SIMP / Mu MATH Package                                                               | 2.12             | 8080                |            | muMATH 80                                          |
| NAD Mail List System                                                                    | 3.0D             | 8080                | 48K        |                                                    |
| Nevada COBOL                                                                            | 2.1              | 8080                | 32K        |                                                    |
| Order Entry w/Inventory/Cybernetics<br>Panel                                            | 2.0              | Z80                 | 4.474      | Needs RM/COBOL                                     |
| PAS-3 Medical                                                                           | 3.0<br>1.78      | 8080                | 44K<br>56K | Also for MP/M-80                                   |
| AS-3 Dental                                                                             | 1.64             | 8080                | 56K        | Needs 132-col. printer & CBASIC                    |
| PASM Assembler                                                                          | 1.02             | Z80                 | JUIN       | Needs 132-col. printer & CBASIC                    |
| Pascal/M                                                                                | 4.02             | 8080                | 56K        | CP/M 2.4 only                                      |
| ASCAL/MT Compiler                                                                       | 3.2              | 8080                | 32K        | Ci / M 2.4 Only                                    |
| PASCAL/MT + w/SPP                                                                       | 5.5              | 8080                | 52K        | Needs 165K/drive                                   |
| ASCAL/Z Compiler                                                                        | 4.0              | Z80                 | 56K        |                                                    |
| Payroll/Cybernetics, Inc.<br>Payroll/Peachtree                                          | 05 10 01         | Z80                 |            | Needs RM/COBOL                                     |
| ayroll/Structured Sys                                                                   | 07-13-81<br>1.0E | 8080                | 48K        | Needs BASIC-80 4.51                                |
| PEARL SD                                                                                | 3.01             | 8080<br>8080        | 60K<br>56K | w/It Works run time pkg.                           |
| LAN80 Financial Package (Z80/8080)                                                      | 2.3              | 8080/Z80            | 56K        | w/CBASIC2, ULTRASORT II                            |
| LAN80 Demo                                                                              | 1.2              | 8080                | JUN        | Specify Z80/8080                                   |
| PL/I-80                                                                                 | 1.3              | 8080                | 48K        |                                                    |
| LINK I Linking Loader                                                                   | 3.28             | Z80                 | 24K        |                                                    |
| LINK-II Linking Loader                                                                  | 1.14             | Z80                 | 48K        |                                                    |
| MATE                                                                                    | 3.02             | 8080                | 32K        |                                                    |
| MATE-PC<br>OSTMASTER Mail List System                                                   | 1.04             | 8088                | 1011       | For the IBM PC                                     |
| OSTMASTER Mail List System<br>rofessional Time Acctg                                    | 3.5              | 8080                | 48K        | N. L. CRACICA                                      |
|                                                                                         | 3.11a            | 8080                | 48K        | Needs CBASIC2                                      |
|                                                                                         | 12               | 80807780            | 561        | Noods BASIC 80                                     |
| rogrammer's Apprentice<br>roperty Management Program (AMC)<br>roperty Management System | 1.2<br>4.2       | 8080/Z80<br>Z80     | 56K<br>48K | Needs BASIC-80<br>Needs CBASIC 2.07+, CP/M-80 2.0+ |

1

## **VERSION LIST**

| Product                                                           | S               | Р                | MR         |
|-------------------------------------------------------------------|-----------------|------------------|------------|
|                                                                   |                 | 8080             | 48K        |
| Property Manager<br>PSORT                                         | 1.0<br>1.3      | 8080             | 401        |
| QSORT Sort Program                                                | 2.0             | 8080             | 48K        |
| Quic-N-Easi                                                       | 1.4             | Z80              | 48K        |
| Real Estate Acquisition Programs<br>Remote                        | 2.1<br>3.01     | 8080<br>Z80      | 56K        |
| Residential Prop. Mngemt. Sys.                                    | 1.0             | Z80              | 48K        |
| RM/COBOL Compiler                                                 |                 | 2020             | 201/       |
| RAID<br>RAID w/FPP                                                | 5.0.2<br>5.0.2  | 8080<br>8080     | 28K<br>40K |
| RECLAIM Disk Verification Program                                 | 2.1             | 8080             | 16K        |
| SBASIC                                                            | 5.4a            | 8080             | 48K        |
| Scribble<br>SELECTOR-III-C2 Data Manager                          | 1.3<br>3.24     | 8080<br>8080     | 48K        |
| SELECTOR-IV                                                       | 2.17            | 8080             | 52K        |
| SELECTOR-V                                                        | 5.0             | 8080             | 48K        |
| Shortax                                                           | 1.2             | Z80              | 48K        |
| SID Symbolic Debugger<br>Spellguard                               | 1.4<br>2.0      | 8080<br>8080/Z80 | 32K        |
| Standard Tax                                                      | 1.0             | 8080             | 48K        |
| STATPAK                                                           | 1.2             | 8080             | 101/       |
| STIFF UPPER LISP<br>STRING BIT FORTRAN Routines                   | 2.8<br>1.02     | 8080<br>8080     | 48K        |
| STRING/80 bit FORTRAN Routines                                    | 1.22            | 8080             |            |
| STRING/80 bit Source                                              | 1.22            | 8080             |            |
| SUPER SORT I Sort Package                                         | 1.5             | 8080<br>8080/Z80 | 40K        |
| SELECT<br>T/MAKER II                                              | 2.6             | 8080/280         | 40K<br>48K |
| T/MAKER II DEMO                                                   | 2.4             | 8080             | 48K        |
| TEX Text Formatter                                                | 2.1             | 8080             | 36K        |
| TEXTWRITER-III<br>TIM-III                                         | 3.6<br>3.12     | 8080<br>8080     | 32K        |
| TIM-III                                                           | 3.11            | 8086             |            |
| TINY C Interpreter                                                | 800102C         | 8080             |            |
| TINY C-II Compiler                                                | 800201          | 8080<br>8080/Z80 |            |
| Torricelli Author<br>TRS-80 Customization Disk                    | 1.04c<br>1.3C   | 8080/280         |            |
| ULTRASORT II                                                      | 4.1C            | 8080             | 48K        |
| UT-86                                                             | 1.00            | 8086             |            |
| Lifeboat Unlock<br>VISAM                                          | 1.3<br>2.3p     | 8080<br>8080     | 48K        |
| Wiremaster                                                        | 3.12            | Z80              | HOIN       |
| Wordindex                                                         | 3.0             | 8080             | 48K        |
| Wordmaster<br>WordStar                                            | 1.07A<br>3.0    | 8080<br>8080     | 40K<br>48K |
| WordStar w/MailMerge                                              | 3.0             | 8080             | 48K        |
| WordStar Customization Notes                                      | 3.0             | 8080             |            |
| XASM-05 Cross Assembler                                           | 1.05            | 8080<br>8080     | 48K<br>48K |
| XASM-09 Cross Assembler<br>XASM-51 Cross Assembler                | 1.09            | 8080             | 40K<br>48K |
| XASM-F8 Cross Assembler                                           | 1.04            | 8080             | 48K        |
| XASM-400 Cross Assembler                                          | 1.03            | 8080             | 48K        |
| XASM-18 Cross Assembler<br>XASM-48 Cross Assembler                | 1.41<br>1.62    | 8080<br>8080     |            |
| XASM-65 Cross Assembler                                           | 1.97            | 8080             |            |
| XASM-68 Cross Assembler                                           | 2.00            | 8080             |            |
| XYBASIC Extended Interpreter<br>XYBASIC Extended Disk Interpreter | 2.11<br>2.11    | 8080<br>8080     |            |
| XYBASIC Extended Compiler                                         | 2.0             | 8080             |            |
| XYBASIC Extended Romable                                          | 2.1             | 8080             |            |
| XYBASIC Integer Interpreter                                       | 1.7             | 8080<br>8080     |            |
| XYBASIC Integer Compiler<br>XYBASIC Integer Romable               | 2.0<br>1.7      | 8080             |            |
| ZAP-80                                                            | 1.4             | 8080             |            |
| Z80 Development Package                                           | 3.5             | Z80              |            |
| ZDM/ZDMZ Debugger<br>ZDT Z80 Debugger                             | 1.2/2.0<br>1.41 | Z80<br>Z80       |            |
| ZSID Z80 Debugger                                                 | 1.41<br>1.4A    | Z80              |            |
|                                                                   |                 |                  |            |

| Needs CBASIC<br>N/A Durango                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------|
| Also runs on TRS-80 Mod III<br>Needs CBASIC                                                                                                 |
| w/Cybernetics CP/M-80 2, OASIS, UNIX                                                                                                        |
|                                                                                                                                             |
| Needs CBASIC<br>Needs CBASIC                                                                                                                |
| TRSDOS,MDOS too, needs BASIC-80 5.0<br>N/A-Superbr'n<br>Needs Word Processing Program<br>Needs BASIC-80 4.51<br>Needs BASIC-80 4.2 or above |
|                                                                                                                                             |
| Max. record=4096 bytes                                                                                                                      |
| Avail. for CDOS                                                                                                                             |
| For the IBM PC                                                                                                                              |
| 24x80 CRT                                                                                                                                   |
| Specify operating system: IBM PC/CPM-86/MS-DOS<br>Use w/BASIC-80 5.2                                                                        |
| Needs 180K/drive<br>Needs WordStar                                                                                                          |
|                                                                                                                                             |
|                                                                                                                                             |
|                                                                                                                                             |
|                                                                                                                                             |
|                                                                                                                                             |

With EDIT features Requires the XYBASIC w/EDIT features to create SOURCE

Needs 50K/drive N/A-Magnolia,Superbr'n,mod.CP/M-80 For N'Star,Apple,IBM 8'' N/A-Superbr'n,mod.CP/M-80 N/A-Superbr'n,mod.CP/M-80

+ These products are available in Z80 or 8080, in the following host language: BASCOM, COBOL-80, FORTRAN-80, PASCAL/M, PASCAL/Z, CIS-COBOL, CBASIC, PL/I-80, BASIC-80 4.51, and BASIC-80 5.xx.

# BOY, IS THIS COSTING YOU.

It's really quite basic: time is money.

And BASIC takes a lot more time and costs a lot more money than it should every time you write a new business software package.

Especially when you could speed things up with dBASE II.

#### dBASE II is a complete applications development package.

Users tell us they've cut the amount of code they write by up to 80% with dBASE II.

Because dBASE II is the high performance <u>relational</u> database management system for micros.

Database and file handling operations are done automatically, so you don't get involved with sets, lists, pointers, or even opening and closing of files.

Instead, you write your code in concepts.

And solve your customers' problems faster and for a lot less than with BASIC (or FORTRAN, COBOL or PL/I).

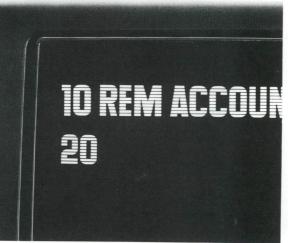
## dBASE II uses English-like commands.

dBASE II uses a structured language to put you in full control of your data handling operations.

It has screen handling facilities for setting up input and output forms.

It has a built-in query facility, including multikey and sub-field searches, so you can DISPLAY some or all of the data for any conditions you want to apply.

You can UPDATE, MODIFY and REPLACE entire databases or individual characters.


CREATE new databases in minutes, or JOIN databases that already exist.

APPEND new data almost instantly, whether the file has 10 records or tens of thousands.

SORT the data on as many keys as you want. Or INDEX it instead, then FIND whatever you're looking for in seconds, even using floppies.

Organize months worth of data in minutes with the built-in REPORT. Or control every row and column on your CRT and your printer, to format input and output exactly the way you want it.

You can do automatic calculations on fields,



records and entire databases with a few keystrokes, with accuracy to 10 places.

Change your data or your entire database structure without re-entering all your data.

And after you're finished, you can protect all that elegant code with our runtime compiler.

# Expand your clientbase with dBASE II.

With dBASE II, you'll write programs a lot faster and a lot more efficiently. You'll be able to write more programs for more clients. Even take on the smaller jobs that were out of the economic question before. Those nice little foot-in-the-database assignments that grow into bigger and better bottom lines.

# Your competitors know of this offer.

The price of dBASE II is \$700 but you can try it free for 30 days.

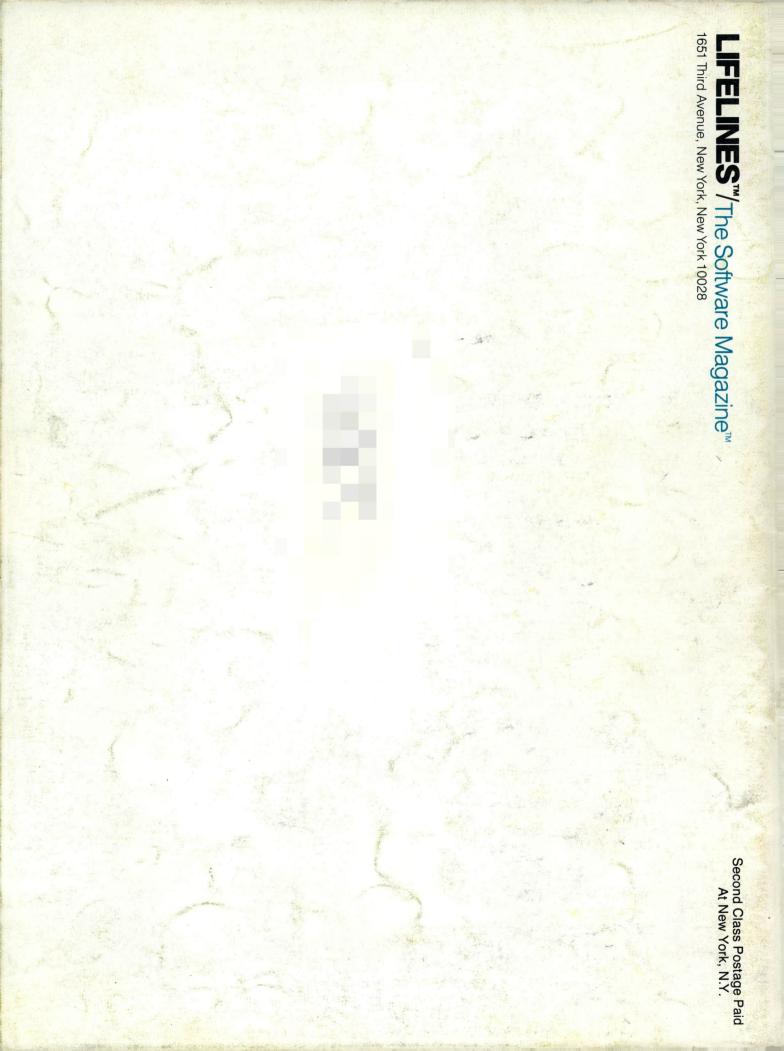
Call for our Dealer Plan and OEM run-time package prices, then take us up on our money-back guarantee. Send us your check and we'll send you a copy of dBASE II that you can exercise on your CP/M<sup>®</sup> system any way you want for 30 days.

Then send dBASE II back and we'll return all of your money, no questions asked.

During that 30 days, you can find out exactly how much dBASE II can save you,

and how much more it lets you do.

But it's only fair to warn you: business programmers don't go back to BASIC's.


Ashton-Tate, 9929 Jefferson, Los Angeles, CA 90230. (213) 204-5570.



n,

®CP/M is a registered trademark of Digital Research

Also available from Lifeboat Associates.

