
The Software Magazine
$3.00 June 1982 Volume III, No. 1 (ISSN 0279-2575. uses 597-830)

Evaluating Application Development Software

Introduction To Microcommunications

MicroSpell, MicroProof, And SpellGuard

8080 Assembler Tutorial: Subroutines

A Review of FMS-80

CPMUG Volume 81

Using PLAN80

TIM III
The Non-Programming Approach to Data Base Management

Data Base Management
Data management packages were created to

save time and money in the development of software
solutions to information problems. Many have been
designed to accomplish just that, although most have
only the programmer in mind. Sure they would save
time in the long run, but what of the initial investment
in time and effort required to learn the new language?
What about the non-programmers in the world who
would like an easy yet powerful applications generator?
The solution is one of the most highly acclaimed soft'
ware packages of our time, T.I.M. HI.

What is TI.M.?
T.I.M. is Total Information Manage-

ment. Programmers love it due to its original solutions
to classic data management problems. Non-
programmers adore it since they can use it to achieve the
same results as with other more complicated
programming'like packages.

What Makes T.I.M. So Simple
to Use?

We at Innovative Software, Inc. designed
T.I.M. from day one with the end user in mind. Maybe
he is a programmer who doesn’t have time to learn a
new language. Or perhaps a neophyte who fears coding
pads and lines numbered by tens. We felt that a data
management package should be able to be used by
anyone from a systems analyst to a secretary. That’s why
T.I.M. takes a full menu-driven approach, uses multiple
HELP screens, and has a manual that sets a new stan-
dard in documentation.

Features of T.I.M.
T.I.M. has all of the features one has come to

expect from a data management package, as well as
many new ones. For example, a word processing interface
that allows you to merge information from a T.I.M. file
with letters or other documents created by a word pro-
cessor. Now you can automatically send personalized let'
ters to hundreds or thousands—quickly and easily.
T.I.M.s Select command enables you to pull specific infor-
mation from a file. For example. “All customers who live
in a certain ZIP code, whose last name begins with the
letter A to L, whose balance due is less than $50.00.” A
sophisticated report generator and even a list generator are
also included.

How powerful is T.I.M.? With a maximum
record size of 2400 characters and the ability to keep up
to forty fields sorted properly at all times, TI.M. is
powerful enough to handle just about any application.
TI.M. can handle over 32,000 records per file, and two
files can be linked together for reports if your application
requires a many-to-one relationship. T.I.M. also includes
all of the same editing commands as your word pro-
cessor, thus making data entry and editing a snap. You
can also pull selected records from one file to place them
into another. Files may be restructured to add or sub'
tract fields and/or change field lengths or types.T.I.M.
even has it’s own utility for backing up hard disks onto
floppies.

Where to Find TI.M.
T.I.M. is available from Lifeboat

Associates. Or you may purchase from us direct
by calling 913/383'1089. Either way you will

have the finest data management

ikSTSoftware

able to read and understand our manual immediately.
The second section is a primer which goes through
several examples for you, again in plain English.
These true-todife examples take the beginner by the
hand, and instructs him what to do and when. You
will be able to see for yourself that T.I.M.s only limita-
tion is the imagination of the user.

The Manual
Many people believe that the manual is

just as important as the software itself a view that we
at Innovative Software, Inc. tend to share. The
manual for T.I.M. is divided into two sections, the
Reference section and the Primer. The Reference
section describes all of T.I.M.s commands
and subcommands. This is done in v /
English, not in technical terms or in •
our own language. Even if you have | | | | UUK

Innovative Software, Inc.
9300 W. 110th Street, Suite 380
Overland Park, Kansas 66210 USA
913/383-1089

Available for CP/M,* and
IBM PC DOS.**
CP/M version—*695. IBM PC version—*495.

TIM is a Trademark of Innovative Software, Inc.
♦CP/M and MP/M are Trademarks of Digital Research
♦♦Trademarks of IBM

REMEMBER:
■

FORGETS:'NEVER’

MORE THAN JUST ANOTHER PRETTY MCE
make life miserable for everyone in the disk-making
business.

How? By gathering together periodically (often,
one suspects, under the full moon) to concoct more
and more rules to increase the quality of flexible
disks. Their most recent rule book runs over 20 single-
spaced pages—listing, and insisting upon— hundreds
upon hundreds of standards a disk must meet in
order to be blessed by ANSI. (And thereby be taken
seriously by people who take disks seriously.)

In fact, if you’d like a copy of this formidable docu-
ment, for free, just let us know and we'll send you
one. Because once you know what it takes to make
an Elephant for ANSI . . .

We think you’ll want us to make some Elephants
for you.

Says who? Says ANSI.
Specifically, subcommittee X3B8 of the American

National Standards Institute (ANSI) says so. The fact
is all Elephant™ floppies meet or exceed the specs
required to meet or exceed all their standards.

But just who is "subcommittee X3B8" to issue such
pronouncements?

They’re a group of people representing a large,
well-balanced cross section of disciplines—from
academia, government agencies, and the computer
industry. People from places like IBM, Hewlett-Packard,
3M, Lawrence Livermore Labs, The U.S. Department
of Defense, Honeywell and The Association of Com-
puter Programmers and Analysts. In short, it's a bunch
of high-caliber nitpickers whose mission, it seems, in
order to make better disks for consumers, is also to

ELEPHANT. HEAVY DUTY DISKS.
Distributed Exclusively by Leading Edge Products, Inc., 225 Turnpike Street, Canton, Massachusetts 02021

Call: toll-free 1-800-343-6833; or in Massachusetts call collect (617) 828-8150. Telex 951-624.

■JFELSMEs*
The Software Magazine
June 1982 Volume III, No. 1

Editor-in-Chief: Edward H. Currie
Editor: Jane Mellin
Circulation/Customer Service: Patricia Matthews
Director of Communications: Bonita E. Taylor

Design/Production: K. Gartner
Typographer: Harold Black
Cover by K. Gartner
Cover photography by Bruce Weiss

DEPARTMENTS
Opinion

6 Editorial Comments
All things come to those who wait

Edward H. Currie
7 The Pipeline

Pick Your Modem, Folks
Carl Warren

The CP/M® Users Group
27 Volume 81 Catalogue and Abstracts

Software Notes
21 Tips & Techniques
26 For COBOL-80™ Users
28 Macros of The Month

Edited by Michael Olfe
37 Patches For MAGSAM™
40 Pseudo-Relocatable Subroutines,

Part 2 Gregory A. Knott

42 For BSTAM™/BSTMS™ Users
50 Modifying Control-C In M BASIC™

Bill Norris
53 Notes On dBASE II™, Version 2.3B

Michael Olfe

Product Status Reports
51 New Products
52 New Versions
53 Bugs
54 Version List

Miscellaneous
10 Notice
19 KIBITS™
20 Renew
34 A Call For Manuscripts
42 Attention Dealers

Copyright © 1982, by Lifelines Publishing Corporation. No portion of this publication may be
reproduced without the written permission of the publisher. The single issue price is $3.00 for
copies sent to destinations in the U.S., Canada, or Mexico. The single issue price for copies
sent to all other countries is $4.30. All checks should be made payable to Lifelines Publishing
Corporation. Foreign checks must be in U.S. dollars, drawn on a U.S. bank; checks, money
orders, VISA, and MasterCard are acceptable. All orders must be pre-paid. Please send all cor-
respondence to the Publisher at the below address.

Lifelines (ISSN 0279-2575, USPS 597-830) is published
monthly at a subscription price of $24 for twelve issues, when
destined for the U.S., Canada, or Mexico, $50 when destined
for any other country. Second-class postage paid at New York,
New York. POSTMASTER, please send changes of address to
Lifelines Publishing Corporation, 1651 Third Ave., New York,
N.Y. 10028.

Lifelines -TM Lifelines Publishing Corp.
The Software Magazine -TM Lifelines Publishing Corp.
SB-80, SB-86 - TMs Lifeboat Associates.
The Apple - TM Apple Computer, Inc.
BASIC-80, MBASIC, MS, SoftCard, COBOL-80 - TMs Microsoft, Inc.
BSTAM, BSTMS - TMs Byrom Software.
CB80, CBASIC2, PL/l-80, SID-86 CP/M-86 - TMs, CP/M registered TM - Digital Research, Inc.
The CP/M Users Group is not affiliated with Digital Research, Inc.
dBASE II - TM Ashton-Tate.
FMS-80 - TM Systems Plus.
KIBITS - TM Bess Garber and Seton Kasmir.
MAGSAM - TM Micro Applications Group.
MicroProof - TM Cornucopia Software.
MicroSpell - TM Bob Lucas.
PLAN80 - TM Business Planning Systems, Inc.
PMATE, PLINK-II - TMs Phoenix Software Associates, Ltd.
SMARTERM - TM Advanced Logic Systems, Inc.
SpellGuard - TM Innovative Software, Inc.
WordStar, SpellStar - TMs MicroPro International Corp.
Z80 - TM Zilog Corporation.
Program names are generally TMs of their authors or owners.

FEATURES
12 A Review of FMS-80™

Mark Rettig
This powerful, menu-driven file management system is evaluated as part of our data base
management series.

17 AUTOLOAD For SB-80™, CP/M-86™ And CP/M-80 On The
Osborne I Computer

Kelly Smith
Did you know that the AUTOLOAD feature of CP/M-80 also exists in SB-80 and CP/M-86?
And a special assembly language programming trick will help you implement it on the
Osborne I computer.

20 SMARTERM™ Inverse Video In CP/M-80 For The Apple™
Lou P. Rivas

This article will let you bypass some problems in achieving inverse video with the
SMARTERM card, the Z80™ SoftCard™ and your Apple.

23 Criteria For Evaluating Application Development Software
Steve Patchen

“Fourth generation’’ software is emerging in a wide variety of styles and capabilities. This
author has established some standards by which to assess these new products.

30 8080 Assembler Tutorial: Subroutines
Ward Christensen

Subroutines for data movement, arithmetic, logical and input/output are covered; more
subroutines will be examined later on.

35 MicroSpell™, MicroProof™, and SpellGuard™
James K. Mills

The best of current spelling checkers are compared (including SpellStar™, which was fully
described in last month’s issue). This article will help you decide which product best suits
your needs.

38 A Detailed Description of PLAN80™, Part 2
Raymond J. Sonoff

PLAN80 can eliminate the drudgery which used to be part of financial modeling. Other
financial planning packages will be discussed in future issues.

44 An Introduction To Microcommunications
Davis Foulger

The possibilities for microcommunications are rapidly expanding - in terms of methods, soft-
ware, and the wealth of information available to the microcomputer user.

Use your desk-top computer
to produce sophisticated
graphs and charts with a
small number of simple,
straightforward commands
in plain English.

With this easy-to-use
graphics software system,
even a first-time user can
portray data in visual form
— pie charts, line graphs, bar
graphs, symbol plots, mixed
charts, you name it.

You can display produc-
tivity reports, profit trends,
budgets, absenteeism, tax
outlays, office expenses, and
sales projections. Useful for
all types of business and
scientific applications.

Optional full-color support
is available for use with
color terminals, color printers
and plotters.

I l l i

This fully interactive
graphics package sacrifices
nothing in the way of power
and versatility to help com-
municate even your most
complicated presentations

For more information
about GrafTalk and 200
other programs suitable for
use in professional, program-
ming, and personal en-
vironments, contact.

GrafTalk Speaks Your Mind
Lifeboat Associates, 1651
Third Ave NY. NY 10028; (212)
860-0300; or TWX>
710-581-2524 (LBSOFT NYK) or
Telex 640693 (LBSOFT NYK).
Dealer/Distributor/OEM in-
quiries invited.

•’Plotters
HP 7220/1/5
Houston DMP3/4/6/7
Tektronix 4662
Watanabe WX463O/75

Copyright 1982. by Lifeboat Associates
GrafTalk,TM Redding Group, Inc
CP/M, reg TM Digital Research, Inc
tTrademarked by the manufacturers noted
The illustrations are artist's representations of
graphs produced by GrafTalk. and not actual
reproductions

Created and produced by DocuSet(TM)

GrafTalk requires a computer using a
CP/M- -80 compatible operating system as
well as a video terminal and one of the wide
variety of printers*, plotters** or graphics CRTs
The following is a partial list of supported
printers and plotters

•Printers
Diablo 1640 1650,630 +
NEC Spinwriter +

The following must be used in conjunction with
a graphics terminal, such as Autograph 110. etc

Epson with GrafTrax +
Anadex with 'R' options

Lifeooat. Inc.
5-13-14 Shiba
Mmato-ku, Tokyo. 108 Japan
Telephone 03-456-4101
Telex. 2423296 (LBJTYOJ)

Lifeboat Associates. GmoH
Hmterbergstrasse 9
Postfach 251
CH 6330 Cham. Switzerland
Telephone. 042/36 8686
Telex 865265 (MICO CH)

Intersoft. GmbH
Schlossgartenweg 5
0-8045 Ismanmg. W Germany
Telephone 089-966-444
Telex 521 3643 (ISOFD)

Lifeooat Associates SARL
70 Avenue D Argenteuil
92600 Asnieres. France
Telephone: (1) 733-08-04
Telex 620154 (LBFRA;

Lifeooat Associates. Ltd.
PO Box 125
London WC2H 9LU United Kingdom
Telephone: 01 836-9028
Telex. 893709 (LBSOFTG)

Lifeboat Associates
1651 Third Avenue
New York. New York 10028
Telephone (212) 860 0300
TWX: 710-581-2524 (LBSOFT NYK)
Telex. 640693 (LBSOFT NYK)

Lifeboat Associates
World's Foremost Software Source

The exchange library of The CP/M® Users Group (CPMUG™)
contains 100’s and 100's of programs catalogued into over 80
volumes of software available to you at nominal cost.

Everything from:

• Languages such as FELIX, SAM76, BASIC E, etc.

• Assemblers and Disassemblers

• Editors

• System utilities, including a complete disk cataloging system

• Games, including Adventure

• Special applications such as Animation and Computer music

• And almost everything in full source code.

The complete catalog of CPMUG volumes is available for $6 pre-
paid to the U.S., Canada and Mexico. $11 prepaid to all other coun-
tries.

Copyright©1982, by CPMUG.
*Domestic price for 8" disks. CP/M, reg. trademark of Digital Research, Inc.
Inquire for NorthStar and overseas prices. The CP/M Users Group is not affiliated with Digital Research, Inc.

Over

10
MBytes

Of
Software
At $8 Per
Diskette

FullTHE CP/M USERS GROUP
1651 Third Avenue, New York, N.Y. 10028

% DUTY CYCLE PRINTERS

SETTING NEW STANDARDS IN QUALITY
APART FROM THE REST

MODEL
Columns:
Print Speed: (cps)
Bidirectional/Short Line Seeking:
Throughput: (Ipm)

20 Char/line
40 Char/line
80 Char/line

136 Char/line
Head Life
Graphics Option:
RS 232:
Tractor Feed:
Friction Feed:
Pin Feed:
Super Scripts • Sub-Scripts • Underline:
Colors:

ML80
80
80

ML82A
80

120

ML83A
136
120

ML84
136
200

2350
136
350

86
51
28

500
340
210
136
500 million
72x72
Opt.
Std.

173
117
71
46

— 200 million characters —
60x66
Std.
Opt.

187
123

73

60x66
Std.
Std.

266
184
114
74

Block
Opt.
Opt.

72x72
Opt.
Std.

2

Immediate Delivery ♦ Technical Assistance • Leasing ♦ Maintenance • Interface Cables • Ribbons

GRAYDON-SHERMANJNC.
(212)289-3199 (201) 467-1401 * TWX #710-983-4375 (GRAYDON MAWD)

Opinion _____________
Editorial Comments Edward H. Currie

boards. These systems typically sup-
port the transfer of programs/ data at
baud rates of 300-600 and in some cases
as high as 1200 baud. A significant
body of software has resulted from in-
terests in such systems.

Another development in the micro-
computer field is also having an impact
upon the growth of microcomputer
telecommunications, while appearing
to be somewhat unrelated.

Since it is true that many microcompu-
ter operat ions are not "compute
bound" but rather "I/O bound", soft-
ware developers concluded that this
spare CPU time could be used to good
advantage. From this conclusion
sprang the multiuser operating system
for microcomputers. Unfortunately
eight-bit architecture does not lend it-
self well to such designs. To date the
various multiuser systems for micros
have for the most part met with little
success, due to several factors.

Curiously enough, the significantly
greater transfer rates possible with
Winchesters have been overlooked by
many system designers. Typically Win-
chester drives are configured to func-
tion as floppy systems with thyroid
problems (i.e. they function as little
more than oversized floppies) and the
resultant I/O transfer speeds are so
slow as to seriously degrade the system
in multiuser applications in all but the
most trivial cases.

However, multiuser software has proven
to be of significant value in the multi-
tasking environments of business and
professional end users. In such situa-
tions a typical user does not want to lose
access to his system while it is perform-
ing such simple tasks as transferring a
file to another system or printing.

So-called "concurrent" systems sup-
port multiple tasks like background
printing and file transfer via phone
lines. These "background tasks" fortu-
nately are slow enough to permit them
to occur contemporaneously with fore-
ground tasks, such as word processing,

applications programs, assemblies, etc.

Thus the agonizing over the best
schemes for locking records and files,
and the protection of data bases' integ-
rity against transgressions committed
by trespassers in a multiuser environ-
ment can be avoided. There is still,
however, the nagging problem of how
to handle different tasks accessing the
same files, so that the integrity of the
data base is maintained.

Many hardware manufacturers are as-
sisting. They offer buffering for
printers which allows high speed bursts
of data to be transferred to a printer
buffer during slack periods, further
freeing up CPU time. In those cases
where CPU time is available, consider-
able advantage is gained by passing as
much data as possible to the buffer.
Then when CPU demand becomes crit-
ical for other activities, the printer has
lots of text to print while waiting for the
next time the CPU is available.

Five, six and eight megabyte clock rates
for the standard CPUs further facilitate
the support of multitasking. Add to
this the buffering employed in many of
the newer terminals to avoid character
loss, together with faster track to track
times, transferring of whole tracks into
memory, etc. and you can readily see
that the ground work for multitasking
is being laid rapidly.

The advent of low cost 64K DRAMs
(Dynamic RAMS) means that micros
capable of addressing a megabyte or
more of memory will be commonplace.
This means, among other things, that
multiple tasks can reside in memory si-
multaneously to further increase sys-
tem throughput.

Finally, the use of DRAMs to simulate
floppy disks (a virtual floppy) will do
much to increase effective disk access
and at prices which are well within
the reach of most end users. Expect
to see many memory vendors offer-
ing the software necessary for floppy
simulation.

(continued on page 11)
Lifelines/The Software Magazine, June 1982

All things come to those who wait . . .

Interestingly enough, microcomputer
telecommunications is evolving rap-
idly for microcomputer systems and
this, as we shall see, is indeed a timely
development.

IBM decided some years ago that the
world's supply of programmers was, in
their words, "running out". This led
them to study in more detail how best
to meet the growing needs for compu-
ters. Several interesting conclusions
were drawn.

For one thing, the average response
time of a human was determined to be
on the order of one hundred millisec-
onds. IBM's studies showed that it is
very important for a computer system's
response time to be compatible with its
human counterpart since a slower sys-
tem response time would result in an in-
terruption in the thought processes of
the user. Ideally all operations and con-
catenations of operations should take
place in less than one hundred milli-
seconds.

Furthermore, data movement and
manipulation were found to be often
more important than data reduction.
The establishment and maintenance of
data bases from which data could flow
and ebb was another important consid-
eration. The ability to move large
masses of data over large distances is
obviously equally important.

Clearly floppy-based systems with
three to ten millisecond track-to-track
times are not likely to yield overall sys-
tem response times of fewer than one
hundred milliseconds, but micros can
be the vehicle for the movement and
manipulation of data.

The simplest mechanism for linking mi-
cros to other micros, as well as to larger
computers, is currently via telephone
lines.

As mentioned in previous editorials, a
flurry of activity has occurred with the
advent of computer ized bullet in

Opinion ______
The Pipeline Carl Warren

LP, priced at $495 (single quantity).
This modem is Bell 212-compatible and
operates at 1200 bps; it's designed for
direct connect applications, and uses
line-derived power. The modem is 1200
baud only, and doesn't offer auto func-
tions.

But if dual speeds and auto functions
are a requirement, you should consider
the Codex Model 5212R for $695. This
Bell 212A compatible modem employs
uP control, and combines 300 and 1200
asynchronous functions as well as 1200
baud synchronous capability in one
box. In addition to typical auto func-
tions of auto answer, dial, and line con-
trol, the 5212R includes auto speed
sensing and automatic switching to
answer mode.

This size reduction is achieved by em-
ploying LSI and uP technology for
everything from control to the analog
portions of the modem.

Furthermore, box modems designed to
plug into a terminal or system are being
offered with some innovative packag-
ing. The Universal Data Systems Mod-
el UDS 202 LP, 0-1200 bps half duplex
two-wire model, priced at $265(25), for
example, is designed in a slimline
package to fit directly under a tele-
phone. The small size is achieved by de-
riving power from the telephone line
(20 mamp at 5 V, 13 mamp internation-
ally). The goal of this type of modem,
also available as a board level product,
is to give hardwire functionality with
acoustic coupled portability. This goal
has become much easier to achieve
with the now-relaxed requirements for
a Direct Access Arrangement (DAA) -
for using the Bell switched network
system.

Not everyone is opting for the same
design philosophy, though. The Micro-
peripheral Corporation offers a slim
line 300 bps modem for personal com-
puters, priced at $199.50 with a $79
autodial option. This modem fits neat-
ly under the telephone, but rather than
using the line voltages requires a small

(continued next page)

which measures 2.1- X 2.75- X .5-in.,
features answer/originate, self test
mode, dial tone /busy filter mode and
can be easily programmed by uP or
switch controls. The phone line inter-
face occupies the same amount of space
as the modem and if added provides
FCC certification as well as automatic
pulse and tone dialing with an external
uP.

Rockwell International offers similar
capability with the R24 2400 bps inte-
gral modem package. This modem se-
ries is a high performance synchronous
serial 2400 bps DPSK modem. The mo-
dem employs MoS/LSI technology and
is implemented in three modular build-
ing blocks: a transmitter Module T at
$118; a receiver in two modules Rl, R2
at $218; a complete kit is available for
$395.

The Rockwell modules allow you to
implement a modem using only those
modules necessary for the operation.
Like the Novation modules, Rockwell's
designs offer FCC registration, Bell 201
B/C and CCITT V.26 compatiblity.

Of course, not all applications call for
modularity. Therefore, Rockwell offers
the R24 fully configured on a 5-X7.8-
X .6-in board with full auto functions,
FCC certified direct connect function-
ality and line equalization. The price is
$450.

In modern modems size is just as im-
portant as modularity. Currently, man-
ufacturers are striving to develop mo-
dems which require as little real estate
as possible, exemplified by the modular
designs previously mentioned.

For instance, Radio Shack is offering
the Modem II, for $249. This modem is
a Bell 103- compatible direct connect
design, and uses a built-in uP to control
the automatic functions: answer, origi-
nate, pulse and tone dialing, and auto
on-hook off hook.

Universal Data Systems, however, has
elected to be speedier with the UDS 212

Pick your modem, folks

Although direct-connect modems have
been available since the mid-seventies,
the latest advances in LSI technology
have made it possible for modem man-
ufacturers to develop an entirely new
breed of low-cost direct-connect
modems.

Specifically, modem manufacturers are
offering designs with a number of attri-
butes that greatly simplify integrating a
modem; these include:

• Increased use of LSI and uP tech-
nology to reduce overall size and
cost

• Modular sub-system packaging

• Flexible interconnects; cable and
direct pin

• FCC certification

• Auto functions: dialing and answer,
plus stored number features

This new breed of modems is signifi-
cant because they reduce overall sys-
tem complexity by eliminating extra
cables and circuitry required for
RS-232 interconnection; they also re-
duce the extra power supply required,
since most operate off standard vol-
tages available within a system.

Moreover, by using modular designs
such as those offered by Novation and
Rockwell, for example, you can "de-
sign in" a modem to best fit your space
and operational requirements.

The Novation module series consists of
a low speed modem P/N 490280-X and
the phone line interface P/N 490278.
The 1200 baud 2- and 4-wire Bell 202
compatible version (designated by -2)
of the modem module is priced at
$74(500), with a similar price for the
phone line interface.

The modem module employs LSI tech-
nology, is crystal controlled, and oper-
ates at 300 and 1200 baud in either half
or full duplex. In addition, the module,

Lifelines/The Software Magazine, Volume III, Number 1 7

5V power source. This design, accord-
ing to the company, is to ensure that
adequate power is available for the var-
ious functions their modem permits.

Still more to choose from

Depending on your application, you
might elect to choose from among the
many offerings of Astrocom Corpora-
tion. For specialized applications, you
could look at Model 140-0, which
transmits at 150 bps and receives at
1200 bps in an asynchronous mode
4-wire full duplex, or the model 140-A
which transmits at 1200 bps and re-
ceives at 150 bps. Astrocom supplies
modems either boxed for plugging di-
rectly into a system, or on the card
level.

If you're looking for a design with such
full features as 1200 bps operation,
auto dialing and answering, touch tone
signaling and the ability to understand
either direct or system commands, you
might want to check out the Model
1012 Intelligent Modem from Bizcomp
Corporation. This $895 modem offers
user programmable answer back, the
ability to store the last number dialed,
FCC certification, and automatic speed
sensing. If you don't need the modem
packaged the company offers it at the
board level.

Another notable modem design is the
VA3450 series of triple modems offered
by Racal-Vadic. These modems, which
sell for around $350(25), include Vadic
VA3400, Bell 212A and 103 compati-
bility in a single package. Moreover,
the modem operates in either a syn-
chronous or asynchronous mode, de-
pending on operation. The Vadic and
212A portions employ a quadrature
AM four level PSK modula t ion
scheme, while the 103 portion uses bi-
nary phase coherent FSK. The VA3450
series also sports a receiver sensitivity
of -50dBm when receiving with equal-
izer in, and in the 103 mode operates at
a nominal -45 dBm.

Offering a similar modem is Prentice,
with the Model P-V.22. This unit
(priced at $1034) meets COTT v.22
standards and has 2-wire full-duplex
capability; data rates of 1200 and 600
bps are possible in the synchronous
mode, while 1200, 600 and 0-300 bps
rates are possible in the asynchronous
mode.

If your application calls for speed
above 1200 bps, the Codex Model
5208R Data Modem might fill the bill.
This $2450 modem offers strap selec-
table switching between Bell 208A
(leased line) and 208B dial up line
modes. In addition, the modem sports
self-testing and condition reporting via
front panel LEDs.

Another modem for high speed opera-
tion is the Kinex Microprocessor Data
Modem K9600. This $3950 unit meets
CCITT v.29 standards, operates over
4-wire unconditioned domestic and in-
ternational leased voice grade lines,
and provides user selectable data rates
from 4800 to 7200 bps, to accommo-
date severely degraded lines.

The K9600 is unusual in that all func-
tions (including filtering) are imple-
mented using firmware. This feature,
explains company president Carl
Nordling, means that all updates to the
modem can be accomplished in the
field at very low cost.

Still notable, but not falling into the
direct-connect class, is Paradyne's
Model T-96 priced at $2515(100). This
9600 bps modem is intended for use in
full-duplex, point-to-point applica-
tions, and features a training time of
253 Msec, fallback operating rates of
7200 and 4800 bps; and it is CCITT
v.29 compatible. Like other modems in
its class, the T-96 sports built-in
diagnostics and permits either local or
remote testing.

A unique design built around the Mo-
torola 6860 modem chip is the BC 103,
a 300 bps modem from BC Electronics.
This $225-modem offers auto answer,
and dialing. The BC 103 is strictly a
hobby modem and is sold through
Heath Electronic centers, as is the opti-
mized HDOS operating system de-
signed to work with it.

Considered the undisputed leader in
300 bps modems for personal systems is
Hayes Microcomputer Products Inc.
The latest model yet introduced, called
the Hayes Stack Smartmodem, is de-
signed to operate with any system with
an RS-232 serial port, and can be con-
trolled by any language using ASCII
character strings. This FCC-approved
modem sports built-in diagnostics, and
a system monitor program that con-
trols the functions of the modem. In ad-
dition, the $279 modem supports
touch-tone or pulse dialing and can
work through a PBX board.

Look at the standards

Virtually all modems currently avail-
able conform to either those standards
established by Bell or the standards es-
tablished by the Consultive Committee
for In ternat ional Telephone and
Telegraph (CCITT). The latter's stan-
dards are rapidly becoming the most
widely accepted, because of increased
world-wide data communication, with
even Bell moving towards the CCITT
definitions.

These standards are those definitions
describing exactly how signaling will
be executed over a given line; band-
widths, scrambling, and training se-
quences are laid out so that compatibil-
ity exists between modems. Of course,
other methods do exist but currently
design criteria for modems operating
over the switched network, or private
3002 series lines, require compliance
with the accepted standards.

This compliance, although it helps
avoid chaos in the communication
world, isn't cheap. Meeting Bell 212
standards for 1200 baud operation, for
example, ups the cost of the modem,
since extra circuitry is required to fulfill
the standards requirements.

Information pushes designs

Another influence that is pushing rapid
innovations in modem design is the

The 300 bps connection

Although data rates of 1200 bps and
above are rapidly gaining great impor-
tance for high speed transmission in the
commercial world, 300 bps modems
are still well-entrenched for personal
computers.

One innovative design that meets the
personal uC user's requirements of
direct connect and low price is the
Model TC 4007 from Tek-Com. This
$495 modem operates at 0 to 300 bps,
has a dynamic range of -lOdBm to
-56dBm, is FCC certified, and sports a
built-in dialer with automatic re-dial
capability. In addition, the TC 4007
allows for field programming of an
auto dial function either via the built-in
keypad or by the uC system software.

8 Lifelines /The Software Magazine, June 1982

The ZT-1, introduced this past March
at the West Coast Computer Faire (held
in San Francisco, CA.) was developed,
according to product line manager Mi-
chael Brenner, to meet the needs of
new information services like the
Source (McLean, VA).

The ZT-1 is a two-piece unit made up
of a keyboard terminal, and the Zenith
ZVM-121 video monitor. The key-
board unit measures 2.9- X 15.4- X
7.1-in. weighs 4.4-lbs, and houses a
Bell 103, 300-baud modem, a 63-key
keyboard with 26 alphabetic, 10 nu-
meric, 4 cursor/ special function keys, a
serial RS-232C port selectable from 110
to 2400 baud, and a Centronics type
8-bit printer parallel port. The system
I/O is controlled using an Intel 8051,
and battery backed-up CMOS mem-
ory is utilized for storing directory in-
formation, used by the automatic dial-
ing function.

The video display unit weighs in at
14-lbs. and measures 11. 75- X 16.25- X
12-in.; it has a green phosphor screen,
supports a display format of 80 charac-
ters by 25 lines with a character matrix
of 5 X 9 in a 8 X 10 character field. In
addition, the CRT has a bandwidth
greater than 15MHz, and a typical
video rise time of 50 nsec.

Connecting the ZT-1 to the telephone
line is handled by a standard RJ-11C,
12C, or 13C telephone jack. The dial-
ing method is pulse, which some ob-
servers feel may be an inhibiting factor
should the terminal be employed in an
office with a computer controlled
PABX.

On power up, the ZT-1 displays the
choices available. A series of menus or
indices makes it possible for you to
choose one key for most functions; the
functions include: setting terminal par-
ameters; baud rate (110-300); sign on
message sequence for a remote service;
parity and data word length. The ZT-1
also has the ability to enter up to 26 tel-
ephone directory numbers. Once en-
tered, the numbers can be dialed by
simply tapping the appropriate letter.

In addition to serving as a communica-
tion terminal, the ZT-1 can be attached
to a printer and used as a low-cost elec-
tronic typewriter with essentially one
page of storage. Or if you like, received
information can be driven to the
printer, with automatic XON/XOFF

protocols to avoid loss of data due to a
filled buffer.

Interestingly, the ZT-1 is offered at
$695 (single quantity), and ZDS is will-
ing to provide custom firmware to fit
your specific needs. In addition, you
can probably expect some more add-
ons to turn the system into a relatively
low-cost uC - and possibly a LAN
node, by year's end.

Offering similar capability, but with a
different twist, is Tymshare, with the
Scanset personal information terminal.
This terminal, ranging in price from
$495 for the Model 410 without an inte-
grated modem to $649 for the Model
415 with modem, was designed and
built by the French manufacturer
MATRA.

The Scanset units have six multifunc-
tion keys that you can program, or it
will accept downloadable information
from a host. Up to 12 user-defined tasks
can be assigned to the keys, providing
easy access to host systems or fre-
quently-used data bases.

The autodialer feature of the Model 415
can dial up to 36 phone numbers stored
in the terminal's inviolate memory, and
automatically handle the necessary
password and sign-on functions.

Like the Zenith terminal, the display
handles an 80 character by 25 line dis-
play with the twenty-fifth line serving
as a function key descriptor. Unlike the
Zenith system, however, the Scanset
employs a 9-in. screen, and has a built-
in speaker that echoes the line during
dialing and connect.

The Scanset is also smaller, measuring
9.5- X 10.25- X 14.5-in. and weighing
12-lbs. Furthermore, the terminal is a
single unit with a small square button
63-key keyboard, not really suitable
for typing, a factor which Tymshare of-
ficials consider unnecessary for data-
base query.

The Scanset employs a 6802 uP, and
battery backed up CMOS, which like
the Zenith unit is recharged every time
the terminal is plugged in. Should
higher speed than 300 be important,
Tymshare also offers an optional
Model 912, a Bell 212A compatible mo-
dem for $900.

Although modems are built to exacting
(continued next page)

increasing use of dialup databases, like
those offered by CompuServe (Colum-
bus OH), and The Source (McLean, VA).

According to a report from the Yankee
Group (Cambridge, MA) by 1989 it is
expected that 65 percent of American
women will have full-time jobs, leaving
60 percent of all metropolitan house-
holds unattended during school hours.
This is likely to fuel demand for home
security systems and remote-controlled
appliances, stimulating a need for very
specialized communications devices. In
addition, because of the time being
taken away from traditional home-
making, its expected that services like
QUBE (Columbus, Ohio), Viewtron
(Coral Gables , FL), and Hi-Ovis
(Osaka, Japan) will become common-
place, as they offer the general public
two-way communication for handling
everything from banking to shopping.

Moreover, systems like The Micro-
peripheral Corporation's public mo-
dem', a variation of the Bell 202 type
device, will grow in usage. This 'public
modem' is capable of continuous recep-
tion of data at 1200 baud while simulta-
neously sending data at rates of up to
150 baud. The modem is connected to
the terminal at 9600 baud, for example,
and through speed-changing circuitry
the transmission speed over the line is
lowered to 150 baud. Currently, the
'public modem' is priced at $199.50
with a $49 autodialing option.

The Microperipheral Corporation's
chief engineer, Don Stoner, explains
that cost can be lowered by developing
modems with slow transmit speeds but
high receive rates. He expects that simi-
lar techniques will be employed even as
LSI costs go down. What will change,
however, will be the speeds. So don't be
surprised to find under-$200, full-du-
plex 1200/4800 bps modems as early as
1983.

In related moves towards greater flexi-
bility in providing communications
functions, a number of terminal manu-
facturers are getting on the communi-
cations bandwagon, by providing user-
oriented communications terminals.

One company seeking to provide re-
mote data communications capability
at a low price is Zenith Data Systems
(ZDS), with their model ZT-1 personal
information terminal.

Lifelines/The Software Magazine, Volume III, Number 1

s tandards established by Bell and
CCITT, you might want to consider
implementing an alternate approach,
especially if you're establishing a Local
Area Network (LAN).

The method is to employ a new modem
design from The Microperipheral Cor-
poration. The yet unnamed modem
operates at 4800 bps, has no filters and
sells for about $75 in OEM quantities.
The technique, explains Don Stoner, is
to encode data on the half-cycle. One
bit of data at 4800 bps, for example, is
equal to one-half cycle of 2400 Hz; by
knowing this and using zero crossing
detectors in the receiver the time do-
main between the zero crossings con-
veys the digital information. Through
this technique, the signal amplitude
becomes unimportant and obviates the
necessity of building in line condition-
ing circuitry and providing training
sequences.

Even though the modem doesn't con-
form to accepted standards, Stoner be-
lieves that personal computer users will
find it more than acceptable, since they
can set up high speed networks for very
little cost. Moreover, he believes that
timesharing houses will find the mo-
dem acceptable, since an infinite num-
ber of them can be connected together
with the controlling function being the
Clear to Send (CTS) line. Stoner ex-
plains that it's very much like a hard-
wire network system with masters and
slaves.

Because this modem approach is so
much like a network server concept,
software is required to arbitrate line
collisions, and to set priorities.

A few buying rules

If you're in the market to buy a mo-
dem, you might do well to follow some
simple rules offered by Jim Jordan,
president of Moxon Electronics Ana-
heim, CA.

Jordan suggests that you contact those
vendors with a reputation for reliable
delivery, who can meet the quantities
that you need. Next, visit the plant and
see how the modem is made. Look for
ATE equipment, and a smooth manu-
facturing flow.

Should the vendor(s) meet your expec-
tations, take a look at the packaging.

Specifically, look for Bell 103/212 func-
tionality: for example, insist on built-in
diagnostics, look for auto functions
and stored number features. Most im-
portantly, pass on anything that isn't
FCC registered.

Jordan points out that just about any-
one can build a modem and that pricing
is about the same across the board. The
real difference, therefore, is in who is
the most responsive to your needs and
can make a major commitment.

Racal-Vadic Inc
222 Caspian Dr
Sunnyvale, CA 94086
(408) 744-0810

Rockwell International
Electronic Devices Div
3310 Miraloma Ave
P.O. Box 3669
Anaheim, CA 92803
(714) 632-3729

Tek-Com Inc
2142 Paragon Dr
San Jose, CA 95131
(408) 263-7400

Universal Data Systems
5000 Bradford Dr
Huntsville, AL 35805
(205) 837-8100

Tandy Corporation/Radio Shack
1800 One Tandy Center
Fort Worth, TX 76102
(817) 390-3300

Tymshare Corporation
20705 Valley Green Drive
Cupertino, CA 95014
(408) 446-6000

Zenith Data Systems
1000 Milwaukee Ave
Glenview, IL 60025
(312) 391-8181

For more information . . .

For more information on the modem
products discussed in this article, con-
tact the fo l lowing manufac tu re r s
directly /

Astrocom Corporation
120 West Plato Blvd
St. Paul MN 55107
(612) 227-8651

BC Electronics
1001 W. Kristal Way
Phoenix, AZ 85027
(602) 869-9650

Bizcomp Corporation
P.O. Box 7498
Menlo Park, CA 94025
(415) 966-1545

Codex Corporation
20 Cabot Blvd
Mansfield, MN 02048
(612) 364-2000

Hayes Microcomputer Products Inc
5835 Peachtree Comers East
Norcross, GA 30092
(404) 449-8791

Kinex Corporation
6950 Bryan Dairy Rd
Largo, FL 33543
(813) 541-6404

The Microperipheral Corporation
2643 151st Place N.E.
Redmond, WA 98052
(206) 881-7544

Novation
18664 Oxnard St
Tarzana, CA 91356
(213) 996-5060

Paradyne Corporation
8550 Ulmerton Rd
Largo, FL 33541
(813) 530-2000

Prentice Corporation
266 Caspian Dr
Sunnyvale, CA 94086
(408) 734-9810

-Notice ----------------------

The May issue was placed into
the mail on April 25th. If you had
any problem with the timeliness
of this issue, please call our Sub-
scription Department at (212)
722-1700, or write to Lifelines/
The Software Magazine Sub-
scription Department,1651Third
Ave., New York, N.Y. 10028.We
expect to place this issue, dated
June 1982, into the mail around
May 29th. We will print each
month the date of the previous
issue's mailing and would appre-
ciate your help in tracking the
deliveries.

Lifelines/The Software Magazine, June 1982io

(Editorial Comments, continued from page 6)
Ultimately, the drastic reduction in hardware costs means
that each end user will typically have their own printer and
mass storage devices and therefore a vested interest in multi-
tasking.

Thus it appears that multiuser systems may well be prevalent,
but multitasking will undoubtedly take precedence

File servers, which are devices for supporting access by a
number of microcomputers to a Winchester disk, are also
evolving rapidly for the implementation of local networks of
micros.

Transfer of data via phone lines does introduce a number of
additional needs for standardization. For example, hand-
shaking is imperative in order to assure that file integrity is
maintained. Compression schemes have also evolved rapidly
in order to avoid needless transmission of large numbers of
blank lines, spaces, tabs etc. These schemes must be stan-
dardized, so that files can be readily and reliably moved from
one location to another. Also very important are schemes
used for files with embedded format instructions, like those
produced in word processing applications to be readily inter-
pretable by other word processors from different vendors.

Thus it appears that multitasking will come into widespread
use rapidly, with considerable emphasis placed upon tele-
communications.

Note that all of the handheld micros are supported with tele-
communications schemes. A particularly exciting develop-
ment is the announcement by Sinclair, Sony, et. al. of flat,
miniature TV screens of various designs. Liquid crystal as
well as CRT technology will soon provide a handheld com-
puter the size of a book which will, with bubble memory or
other suitable mass storage, mean a system with mind-bog-
gling capabilities. Imagine a handheld, multitasking micro-
computer with virtual disk storage, optional miniature flop-
pies, integral 24x80 CRT, full keyboard, built-in modem and
printer in a package, all fitting easily into your attache case.

One of the areas now receiving considerable attention is com-
puter graphics. Newer micros will undoubtedly be designed
to support various graphics schemes, some of which will
have incredible resolution. Printer graphics of surprising res-
olution are rapidly coming into widespread use as well. Light
pens, touch screens, voice recognition and speaking termin-
als are also becoming more prevalent. Clearly, all of these
features are greatly enhanced by a multitasking environment.

In the years ahead software authors have their work cut out
for them to take full advantage of all of these exciting hard-
ware developments.

Perhaps the best part of all is that their efforts, together with
the emerging hardware technology and falling hardware
costs will place these micros within everyone's reach. And all
we have to do is wait . . . and not too long at that . . .

ANNOUNCING
THE FOX & GELLER

dBASE II
PROGRAM

GENERATOR!
QUICKCODE™

Now, without any programming, you
can create these in seconds:

* DATA ENTRY PROGRAMS
* DATA RETRIEVAL PROGRAMS
* DATA EDIT /VALIDATION PROGRAMS
* MENUS
* dBASE FILES
INTRODUCING FOUR NEW DATA TYPES:

DATE • DOLLARS • TELEPHONE
• SOC. SEC. NO.

With QUICKCODE, you can have your program,
but you don’t have to write it. So, you can do
things like knocking out an entire accounting
system over the weekend! And QUICKCODE in-
cludes a powerful new version of our popular
QUICKSCREEN™ screen builder, so you will put
together screens and reports that’ll dazzle even
the most skeptical (you can even use Wordstar™
to set up your screen layouts).

YOU MUST SEE IT TO BELIEVE IT.
And is QUICKCODE EASY TO USE? You never
saw anything so easy. You don’t have to know
how to program. You don’t even have to answer a
lot of questions, because there aren’t any!

QUICKCODE $295
ALSO FROM FOX & GELLER

QUICKSCREEN
Microsoft BASIC version $149
CBASIC version 149
dBASE-lI version 149

dUTIL dBASE utility 75

Fox & Geller Associates
P.O. Box 1053

Teaneck, NJ 07666 (201) 837-0142
dBASE-lI TM Ashton-Tate

Wordstar TM Micropro Int’l

Lifelines/The Software Magazine, Volume III, Number 1 11

Features

A Review of FMS-80
Mark Rettig

FMS-81: Menu-Driven Utilities

If an application neither involves complex relationships be-
tween records nor demands that many files be opened at one
time, it could probably be developed using only the set of
menu-driven utilities marketed as FMS-81. The command
language is sold separately as FMS-82, so non-programmers
need not spend money on something they will never use.
Whatever you are doing, the first part of FMS you see, and
the part you will use in first setting up your application, is the
set of menu-driven utilities provided in FMS-81.

Despite what the ads might say, FMS is a file management
system and not a data base management system in the strict
sense of the term. This means that the user must be concerned
with the physical structure of his files, and take pains to in-
sure that file indices are current. For the most part, record
updating is a "batch" process of applying a transaction file
against a data file. This set of menus and utilities is designed
to make all that as painless as possible, and saves the non-
programmer from having to learn all about file management
to develop his application. The menus are divided basically
into three functions: file definition, file maintenance, and re-
port generation. These are described below.

Definitions Editor

Name of package:
FMS-80 Release 2.21D

Authoi;:
David Rodman, DJR Associates
Distributed by Systems Plus, Inc.

Addresses:
Systems Plus
1120 San Antonio Road
Palo Alto, CA 94303
Phone - (415) 969-7047

DJR Associates
2 Highland Lane
North Tarrytown, NY 10591

You may have seen the recent full page advertisements for
"FMS-80: The Two Door Data Base Plus", and wondered
whether it really lived up to all its claims. I first saw FMS (File
Management System) nearly a year ago, and was impressed
enough to choose it over all the other file management sys-
tems on the market, thinking it was exactly what I needed to
develop a rather extensive data management application. My
experience with FMS-80 has been much like my experience
with my first high school girl friend: I fell in love for a month,
became disillusioned when I learned she wasn't perfect, and
finally decided to be "just friends". That could be an outline
of this review.

FMS-80 is a large and very powerful package. You could use
it to develop a major application and still not find occasion to
utilize all the features or explore all the possibilities. This re-
view will describe the major components of FMS and briefly
evaluate their effectiveness and ease of use.

Installation was no problem. Parameter files are included for
many popular terminals, and a utility is provided to set up
FMS for systems whose parameter files are not predefined.
Once you get everything up and running, you can easily cus-
tomize many features to suit your taste. For example, reports
can be routed to different devices, paper size defined, file
name conventions can be changed, and default drives for dif-
ferent file types can be specified. Nice.

The tutorials in the manual are great for learning the system
initially. Overall, the tutorials are the best part about the doc-
umentation. It is easy to learn the basics, but the manual suf-
fers somewhat from a lack of examples in the reference sec-
tion (the report generator excluded). Some help in that area is
found in the diskette of sample programs, which contains
some very helpful code (some of it is even useful!). Between
that and the manual you have most of what you need.

File definitions, screen and menu definitions, and report defi-
nitions are all created using a "split-screen editor". The bot-
tom of the screen provides a place for entering field names,
data types, headings, etc., and the top is where you see the
results of what you typed in. FMS's editor is not like a screen
or line editor where you can type in a free format. It is a very
specialized editor which helps you enter valid definitions
through its formatted entry area, by reminding you of what is
valid, and by refusing to accept things like invalid field types
or digits in an alphabetic field. This helps make life easier. The
only features the editor lacks are a few short-cuts, such as the
ability to copy or move entries. If you have a long definition
to key in, be prepared to sit down and type it all, even if many
entries are nearly identical.

The definitions themselves are very straightforward. For file
definitions, specify the field name, data type (alphanumeric,
decimal, or variable length), field length, and, in the case of
decimal fields, "picture" format. Screens for data collection
and display are set up just by telling FMS what fields and liter-
als to display and where on the screen to put them.

One type of definition merits special mention: the menu defi-
nition. By using the same editor described above, you can de-
velop menus to tie all the functions of a custom application

12 Lifelines/The Software Magazine, June 1982

example, a selection might be made in a sales application for
all records whose department equalled "sports" or whose
salesman was "Jim" and whose quantity was less than 100. Of
course, use of selections is not limited to the report generator.
Output from selections can be routed to a disk file as well as
sent directly to the report generator.

SHELL-80

into a package. If you've ever coded such an animal in BASIC
you can appreciate the following procedure. Just tell FMS
where to print the options on the screen, and what programs,
screens, SUB files, or other menus to execute for each option,
and FMS takes care of the rest. Without coding a line, you
can set up a custom menu-driven application full of screen in-
put, sorts, selects, and reports. Of course there are limita-
tions, but for many common office and information handling
chores, this is just the ticket. I found this feature to be helpful
in setting up a development environment for myself. A "test-
ing system" can be set up with menu options to enter your fa-
vorite program editor, to compile your EFM programs, and
to run each one with test data. Other options can print re-
ports of test results.

File Maintenance Utilities

An interesting and powerful feature of FMS-80 is called "the
SHELL". What it amounts to is a command line monitor
which replaces that of CP/M, and provides an area of storage
that remains "live" across program calls. This means that
command streams can be built dynamically, programs can
easily be linked with menus and other programs, and pro-
grams can receive input from text files rather than the key-
board. By setting a "base program" before calling other pro-
grams, return to the caller is guaranteed no matter what hap-
pens in the called routine. The SHELL is the heart of FMS,
and is an exciting idea. It makes possible such niceties as the
"help" facility, which allows applications screens to be tied in
with text screens. While the utilities are in use, SHELL-80 is
invisible and many users will never need to bother learning
about it. An applications programmer has an interface with it
through EFM, FMS-80's command language. If you really
want to get into it, all you assembler types can order the
SHELL manual and opcode your hearts out.

There are twenty-seven functions available through the
SHELL, such as: SUBMIT, which submits any CP/M com-
mand for execution, set base program, return to base pro-
gram, and get console input from a file. One drawback.I had
a hard time figuring out how to use the SHELL, and had to get
help from my dealer. The problem isn't so much the product
as the documentation, which dedicates only nine pages to de-
scribing the SHELL and its commands. The manual does not
tell you how to use the SHELL. The SHELL manual, available
separately for $15, is some help, but is mostly for assembler
programmers and is still only forty pages long. If you have
time to experiment, great. If not, find somebody who can
help you out, or call Systems Plus. They do their best to aid
bewildered programmers, and their best is pretty good. You
may have to pester an operator to finally get your man. They
seem to be pretty busy out there. But once you get help, you'll
get help.

FMS-82: The EFM Command Language

So far, so good. We have everything defined, data keyed in,
reports coming out, and the package is tied together with nice
menus. But now, suppose your needs are a little more compli-
cated. You want to display information from two or three
files at a time on a single screen, or have input from one screen
update several files. That means it is time to use EFM, the
command language of FMS-80. EFM, in case you were won-
dering, stands for Extended File Maintenance - perhaps the
idea is that you can go beyond the file maintenance capabil-
ities provided in the utilities described above.

EFM has some good features, the strongest of which are the
file access and screen development commands. You can

(continued next page)

Now that you have all those files defined, it is time to do
something with them. The File Maintenance Menu provides
facilities for entering data into your files, sorting files, and up-
dating the index for random access. Each of those functions
can be performed separately, or the "update" option can be
used to do them all in one swoop. You enter "add", "change",
or "delete" transactions, validate and sort them, apply them
to a data file, and update the index to the file all in one opera-
tion.

Rejected transactions are written to a file for later examina-
tion. Update can be combined with a screen definition for "in-
stant" custom data-entry, complete with validation of data
types and transactions. This whole process is pretty straight-
forward, and once you get used to it you can get a lot of work
done in a short period of time. Besides the update utility, a
few CP/M facilities are available, such as ERAse, REName,
and DiRectory, or you can execute a CP/M SUBMIT file. If
you are imaginative you can get very creative with just CP/M
SUBMIT files and FMS commands.

One other way of browsing and updating files is through the
"Direct Query/Update" utility. It is faster than "update", but
watch out when you use it, as it does not leave a printed
transaction trail or update the index to the file.

Report Generator and Selections

FMS includes a very complete report generator. I can't think
of anything you might need to do in a report that isn't pro-
vided for here. Reports are defined using the familiar defini-
tions editor, and one command applies the report definition
to a file to produce printed copy. You can produce summary
totals at field breaks, page breaks, and end of report; headers,
footers, page numbers and dates can be placed appropriately.
New fields for the report can be calculated from fields in the
file being printed.

By creating a "selection definition", you can get a report of
only the records in the file meeting specific criteria. Those cri-
teria can be fairly complex. Records can be chosen based on
whether certain fields equal a value or fall within a certain
range. Criteria can be combined using logical operators. For

Lifelines/The Software Magazine, Volume III, Number 1

perform random and sequential access and update of up to
nineteen files in a program. Through the SHELL, programs
can call other programs (even BASIC programs) or execute
CP/M commands. Given time and the patience of Job you
could write some very complex applications in EFM. Screens
are fairly straightforward to write, and with the use of
graphic characters and reverse video, you can make them
look very classy. It is really a lot of fun to write a screen and
then see FMS make it look fancy by allowing wild-card
searches and validating all the input. Execution is reasonably
fast, and once the indices are loaded into core, random access
of files is also fast.

Another good feature of EFM is its compiler. Although it may
seem limited compared to some of the bigger compilers
around, it serves a great purpose by reducing source code to a
module about one third its original size. This process seems to
involve the removing of blank space and the replacement of
keywords with tokens. The compiler catches most syntax er-
rors, and tries hard to let the programmer know what he or
she did wrong. It occasionally gets confused, but don't we all?
The compiled modules are not directly executable COM files,
but require, along with them, a run time module in core to be
executed. All this is very good. But there are some weak-
nesses which offset the good points of the language and are
somewhat limiting: the lack of control structures, the lack of
named variables, and the lack of string handling functions.

The language contains just barely enough control structures
to let you get through a program. It has IF - THEN - ELSE, a
SWITCH statement (case structure), and provision for
CALLing internal subroutines. That is all. There are no loop
structures and nested IFs are not allowed. Of course, this can
be overcome by careful use of labels, CALLs, and GOTO
statements, but such coding takes time, is awkward, and dis-
courages good programming habits.

The use of variables in EFM is very limited. Data types are
character, decimal, and variable length characters. Named
variables are limited to the letters A - Z, which must be deci-
mal numbers. All other variables are referred to by a pair of
numbers representing the file number and field number. The
third field in the first file opened for input is referred to as
"1,3". Its header in the file description might be "number of
widgets", but unless you comment your code thoroughly or
memorize all your file descriptions you will have no idea
what "1,3" means when you see it on page three of your pro-
gram. To add two fields together you would say something
like "1,5 = 1,5 + 3,2". You could write that in the morning,
read it at lunch time, and have no idea what you meant by
such an incantation. By setting up a dummy file description
you can have temporary storage for up to 255 fields which
you can use as program variables. But these are still refer-
enced only by number. So to write an EFM program you need
at hand printed copies of all your file descriptions and your
temporary fields. And unless you comment every line, the
program will be completely unreadable five minutes later.

The third major weakness of EFM is its lack of string handling
functions. To get at the middle of a field you have to assign it
into shorter temporary fields, taking advantage of right and
left truncation of character and decimal assignments. That
works okay for numbers, but is awkward. But alphabetic str-
ings cannot be assigned into decimal fields, which means

there is no easy way to get at just the right end or middle of a
string. If you must do this, you have to write a dummy file de-
scription describing the piece you want as a separate field,
and reading the record using the special description! It's
enough to bring tears to a whole truckload of BASIC pro-
grammers, and will cause a PL/I-80 programmer to faint
dead away.

The result of this deficiency is that a system of any complexity
will be very difficult to maintain and change. Adding a field
on the end of a file may not be much problem, but to add one
in the middle means changing almost every statement and
comment in every program that uses that file!

Programming in EFM should be carried out with careful at-
tention to "good habits", like thorough commenting and seg-
mentation of programs into modules that perform only one
function. Try to make sure a block of code only affects vari-
ables having to do with its function, and put a piece of com-
ment up front to tell what variables it is changing. Your com-
ments will not take up internal storage, thanks to the com-
piler, and you will thank yourself for trying to use structured
methods in your programming. You will probably find
blocks of code that can be used in several programs and de-
serve to be saved as separate "include" files. This also will
make changes easier to do later on. See the reference section
at the end of this article for some help in this area.

By now the reader should understand how one could have a
love-hate relationship with FMS-80. One ray of hope comes
from the fact that Dave Rodman and his co-workers at DJR
associates seem to be very dedicated to supporting and im-
proving their product. Release 3.0 is scheduled to come out
this year, and they claim it will heal many of the ills men-
tioned in this review. Time will tell, but I think the next few
years could see FMS become one of those "great" packages if
Mr. Rodman keeps at it. Until then, I think I can be friends
with release 2.2. As I learned with my high school sweetie,
nobody's perfect.

Review Summary

Good Points:
FMS-80's strong point is its set of menu-driven utilities for
quick and easy development of file management applications
(available as FMS-81). For applications not involving com-
plex relationships between records or accessing many files at
once, FMS is great. As far as I know it is the only data man-
agement package around with such an extensive and well laid
out "front end". Since it writes its files in ASCII, it could con-
ceivably be used as a development tool to create files for input
to other systems.

Bad Points:
Although FMS has a great deal of power, and large applica-
tions could be written with it, any complex application will
involve programming in EFM, FMS-80's command language
(available as FMS-82). EFM is a primitive language, and de-
velopment time is increased by the lack of good variable
naming, inadequate control structures, and absence of string
handling functions. For data entry and display screens and
access of a few files, it is adequate. If you want to do more
than that, stay away from FMS-82 until it is improved.

Lifelines /The Software Magazine, June 1982
14

Underlying Data Model
1. Data Types char; decimal, variable

length
Relationships no inter-record or inter-file

file definition.

additions
screen

entry,

L page

header and footer lines.

Data selection

in FMS-81. An EFM program could easily be

Calculations on data

shouldreading them
not be hard.

(See next page for Tables II and IV)
15

TABLEI
Facts And Figures

Package and Version:
FMS-80, release 2.21D

Price (Suggested Retail):
FMS-81 (File handling and reporting features)- $495
FMS-82 (Extended File Maintenance command

language) - $495

Systems available for:
CP/M, MP/M, CDOS, and TURBODOS

Required supporting software:
None for FMS-81, the menu-driven utilities.
For EFM programming in FMS-82, you need a good

text editor.

Memory Requirements:
48K minimum

Diskette capacity required:
Varies widely with the application, but for most two
drives are best.

Utility programs provided:
A set of editors and screens for defining I/O screens,
menus, files, keys, sorts and selections, and for
printing descriptions of all types of definitions. Also
EFM (Extended File Maintenance), a command lan-
guage for developing custom applications. A report
generator and a direct query/update utility are also
provided.

Record size and type limits:
Each record may have 255 fields of 255 bytes. File
size is limited by disk space. One variable length
alphameric field is allowed on the end of a record,
but random access is not allowed on files containing
variable length fields. Up to 19 files may be opened
by an EFM program.
There are three basic data types: decimal, character,
and variable length character. Decimal fields may be
given a picture format. In EFM, named variables are
limited to 26 numeric variables named A - Z. A
special file provides for 255 other temporary fields.
Numeric variables may range from — 2,147,483,648
to 2,147,483,647. Numeric literals from —999,999,999
to 999,999,999. Character fields are limited to 255
bytes.

Portability:
Good portability between systems with like operat-
ing systems.

User skill level required:
A novice could develop an application which does
not involve complex relationships between records
or accessing many files at once.
An experienced programmer could develop almost
anything.

Systems upgrade policy:
$35 for updates to licensed owners.

Lifelines/The Software Magazine, Volume III, Number 1

Table IV
Summary of FMS-80 Utilities and Commands

Command Name Description

EDITMD Invoke menu definitions editor.
EDITRD Invoke report definitions editor.

EDITSD Invoke screen definitions editor.
FMS Execute Shell-80, and enter into

the FMS application develop-
ment environment.

GLOSSARY Print a file definition.
HELP Display a text file, indexing it by

keyword.
HITCOUNT Count records in a file meeting

selection criteria.

INDEX Build an index for random access
of a file.

MENU Execute a custom menu.
MDPRINT Print a menu definition.
PREPARE Compile an EFM program. Op-

tions can be specified to list the
entire program and send the list-
ing or errors to the printer or a
file.

PRINT Print a file (or selected records
from a file) in a 'quick and dirty"
format. Not pretty, but you can
see your fields without setting up
a report definition.

QUERY An interactive facility for quick
retrieval and update of records.
No paper trail of changes, and no
updating of indexes.

REPORT Execute a report definition.

RDPRINT Print a report definition.

SELECT Create a selection definition
which defines criteria for choos-
ing records from a file. Selections
can be used by PRINT, REPORT,
SUBFILE, SORT, or APPLY1.

SORT Sort a file by specified keys.Sort
an index.

SPRINT Print a selection definition.

SUBFILE Apply a selection definition,
writing selected records to a new
file.

TRANSACT Interactively create transactions
for use by APPLY1: add, delete,
change, and inquire.

UTILITY Get a directory, rename files, and
delete files

TABLE II
Qualitative Factors

Documentation
organization for learning
organization for reference
readability
includes all needed information

Rating *

6
4
6
4

* Ease of use
initial start up 6
conversion of external data 5
application implementation

FMS-81 7
FMS-82 3

operator use 6

Error Recovery
from input error 7
restart from interruptions 7
from data media damage 3

Support
for initial start up 5
for system improvement 4

* Ratings in this table will be in a 1-7 scale where:
1 = clearly unacceptable for normal use
4 = good enough to serve for most purposes
7 = excellent, powerful, or very easy depending

on the category

Table IV
Summary of FMS-80 Utilities and Commands

Command Name Description

APPEND Add records from file2 to end of
filel.

APPLY1 Validate transactions, apply to
master file.

BATCH Execute predefined batch com-
mand file. (FMS or CP/M com-
mands)

CPRINT Print a control definition (key
definition).

DATE Set system date.

DEFSORT Define keys.

DO Execute EFM program.

EDITFD Invoke file definitions editor.

Lifelines/The Software Magazine, June 198216

Features
AUTOLOAD For SB-80,
CP/M-86 And CP/M-80
On The Osborne I Computer

Kelly Smith
:ca07,<2>XD<cr> <— Change to ASCII, address 07, using hex entry
<00><00><00> of <2> for str ing length, and fi lename XD
:W<cr> <— write i t to d i ske t t e . . .

:D<cr> <— Dump i t just to be sure (DU never f a i l s though!)
00 C378B7C3 93B77F02 58440000 00000000 *Cx7C.7..XD *
10 00000000 00000000 00000000 00000000
20 00000000 00000000 00000000 00000000 * *
30 00000000 00000000 00000000 00000000 * *
40 00000000 00000000 00000000 00000000 * *
50 00000000 00000000 00000000 00000000 * *
60 00000000 00000000 00000000 00000000 * *
70 00000000 00000000 00000000 00000000 * . • • • • • • • • • • • • • • • *

Although the AUTOLOAD feature of CP/M-80 has been
described in various computer /software publications, the
second generation equivalent 8080/Z80 CPU operating
system, SB-80 from Lifeboat Associates, has this capability -
as does Digital Research's CP/M-86 operating system (for the
8086 CPU); this facility loads and executes a user-specified
program. Here are instructions on implementing the
AUTOLOAD facility on either operating system, using Ward
Christensen's DU (Disk Utility, version 7.5 from CPMUG
Volume 68 or version 7.7 from CP/M-Net). I've also included
a trick for the Osborne I computer CP/M-80 implementa-
tion, to AUTOLOAD /START programs in three different
ways. Follow along closely, as I explain.

AUTOLOAD For SB-80

:X<cr> <— exi t DU, and return to SB-80

A>; now 'cold boot' SB-80, and i t -w i l l . . .

Directory on dr ive B

1061 DUMP
68| STAT
101 XDS
64| ED

6| DU
10| WASH

COM 121
COM 128 1
COM 71
COM 52|
COM 481
COM 271

SYSTEM CLI 32| CLI
LIST COM 121 PIP
STAT COM+1 41 XD
COPY COM 121 XDIR
SID COM 88| SUBMIT
COPYFAST COM 161 FINDBAD
SYSGEN COM 81

851 DOS
471 SB80
131 XDF
161 ASM
101 XSUB
131 CRCK o

a
o

o
o

pc
g

g
g

g
g

g

Q
 Q

 Q
 Q

 Q
 S

C
g

g
g

g
g

g

25 d i r entr ies ------- 120k bytes used, 121k bytes remaining
SB-80 requires the loading of the system Command Line In-
terpreter file SYSTEM.CLI (the .CLI is that program portion
of the operating system that handles keyboard input from the
user) at "cold boot" time. Lifeboat suggests that the .CLI be
the first file on the diskette, to decrease the load time required
(about 3 seconds, on flexible disk). So, we know that it must
start on Group 2.

A>; i t "autoloaded" XD just f i ne !

AUTOLOAD For CP/M-86

CP/M-86 also has a patchable' file for AUTOLOAD; but in
this case, it's the entire operating system CCP (Console Com-
mand Processor), BDOS (Basic Disk Operating System) and
the BIOS (Basic Input/Output System) which are loaded by a
special "cold boot" loader. OK, so let's go hunting again, in
this case for the CPM.SYS file, but first:
A>pip a :=b :cpn .sys [v]<c r> <— get CPM.SYS f i l e from CP/M-86 d isk

As a precaution, make sure that you are working with back-
up' copies of your diskettes. If you are not careful, it's possi-
ble to 'patch' your disks into 'disk heaven', never to be heard
from again! Here we go; those < cr > 's shown below are your
keyboard return key:
A>du<cr> <— run Ward's Disk U t i l i t y

DISK UTILITY ver 7.7
Universal Version

Type ? for help <— enter ?<cr> i f you have never used DU!
Type X to ex i t

:g0 ;d<cr> <— goto Group 0, and Dump i t . . . (for the non-bel ievers)
G=00:00, T=2, S=l , PS=1
00 00535953 54454D20 20434C49 00004020 * . SYSTEM CL I . . 0 *
10 02030405 00000000 00000000 00000000 * *

I

- as promised, Group 2 allocation!

Note: DU.COM only runs on 8080/Z80 operating systems
(until I whip out XLT86 on it), so put the CPM.SYS file on a
diskette in your SB-80 or CP/M-80 system.
A>du<cr> <— use Ward's DU to 'pa tch ' the CPM.SYS f i l e
DISK UTILITY ver 7.7
Universal Version

Type ? for help
Type X to ex i t

:= SYS<cr> <— f ind ASCII ' space ' , ' space ' , 'SYS'

Note: Since we put CPM.SYS on this disk using whatever
"free space" was available, we can't predict (as we did with
SB-80) what the group allocation numbers will be. So, we
will let DU find it for us, using DU's ' = ' command to search
for a text string in the directory.

SYSTEM.CLI, that we patch for AUTOLOAD

:g2 ;d<cr> <— goto Group 2, and Dump i t
G=02:00, T=2, S=17, PS=20
00 C378B7C3 93B77F00 00000000 00000000
10 00000000 00000000 00000000 00000000
20 00000000 00000000 00000000 00000000
30 00000000 00000000 00000000 00000000
40 00000000 00000000 00000000 00000000
50 00000000 00000000 00000000 00000000
60 00000000 00000000 00000000 00000000
70 00000000 00000000 00000000 00000000

= AT 6C <— last address in search s t r ing • SYS', i s at '6C Hex'
G=0001:0C, T=2, S=29, PS=28

:d<cr> <— dump the group al locat ion info for CPM.SYS
00 E5434241 53383620 204C4F47 00000009 *eCBAS86 LOG. . . . *
10 CF010000 00000000 00000000 00000000 *0 *
20 0043415054555245 20434F4D 00000006 * . CAPTURE COM. . . .*
30 E2010000 00000000 00000000 00000000 *b *
40 0043504D 2D535953 20415554 00000015 *.CPM-SYS AUT *
50 E301E401 00000000 00000000 00000000 *c .d *
60 0043504D 20202020 20535953 00000075 *.CPM SYS.. .U*
70 E501E601 E901EA01 EB01EC01 ED01EE01 *e . f . i . j . k . l .m .n . *

it's in Group 1E5! (this is a 5 Megabyte Hard Disk)
(continued next page)

Ah Hah! Has a very familiar look to it . . . the same old jump
vectors, keyboard string length byte, and then nulls as
CP/M-80 has. Let's set-up to AUTOLOAD SB-80's extended
Directory display program (XD.COM), and see what
happens:

Lifelines/The Software Magazine, Volume III, Number 1 17

AUTOLOAD For CP/M-80
On The Osborne I

:g le5 ;d<cr> <C— go to Group 1E5,, then dunp i t to console
G=01E5:00, T=116, S=9, PS=8
00 01A00340 00A00300 00000000 00000000 * . .e................. *
10 00000000 00000000 00000000 00000000 * . .
20 00000000 00000000 00000000 00000000 * . . if

30 00000000 00000000 00000000 00000000 **
40 00000000 00000000 00000000 00000000 * . . *
50 00000000 00000000 00000000 00000000 * . . if

60 00000000 00000000 00000000 00000000 * *
70 00000000 00000000 00000000 00000000 * . . *

Here is a handy little assembly language programming trick,
to force your Osborne I computer to execute the AUTO-
LOAD/START function (in this case, built into the CP/M-80
operating system and the Osborne I BIOS), in three different
ways.

Edit, assemble, and load the simple program described below
with ED, ASM, and LOAD provided on your CP/M-80 utili-
ty diskette (make sure that you name it AUTOST.ASM,
when you edit it!). Then press RESET on the front of your
Osborne I computer, to AUTOLOAD /START in one of
three ways described in the following sections.

Hmmm...loader information because CPM.SYS is a "REL"
file, let's try the next logical sector in the CPM.SYS file:

:+ ;d<cr> <— advance +1 to the next logical sector, and dump i t . . .
G=01E5:01, T=116, S=10, PS=9
00 E92A03E9 2103E902
10 20202020 20202020
20 49474854 20284329
30 49474954 414C2052
40 20000000 00000000
50 00000000 00000000
60 00000000 00000000
70 00000000 00000000

037F0020
20202043
20313938
45534541
00000000
00000000
00000000
00000000

* i * . i ! . i *
* COPYR*
IGHT (C) 1980, D
*IGITAL RESEARCH *

20202020
4F505952
302C2044
52434820
00000000
00000000
00000000
00000000

Osborne I - AUTOSTART V

O.K., we found what we were looking for, three jump vectors
this time (and yes, the CCP string length byte again). Let's
AUTOLOAD XDIR, translated (8086'afied) from the 'Sorted
Directory' utility SD.ASM (CPMUG volume 65) just last
week! Note, that a number of utilities being translated to run
in the CP/M-86 environment (FINDBAD, FILE-EXT,
MUCHTEXT, etc.) are available from the CP/M-Net™Sys-
tem via modem, at (805) 527-9321 (as well as from other
RCPM's).

If the label 'auto' is equated (see the assembly language pro-
gram that follows) to a value of 'O', your Osborne I will sign-
on by first clearing the screen, and then it will display the
message:

Osborne Computer System
60K CP/M 2.2A

and then display the CP/M operating system 'A> ', waiting
for your command input from the keyboard.

:caa,<4>XDIR<0Xcr> <— change ASCII, s tar t ing at address ‘A’, to:
<00> 4 (hex entry) , XDIR (ASCII entry, 0 (hex entry)

Osborne I - AUTOSTART T
Note that you must place a 'O' byte after your filename text
string, as a terminator to indicate 'end of command string' to
either CP/M-86's CCP or SB-80's .CLI. I didn't bother in the
SB-80 example, because it's already zeroed out for us.

If 'auto' has a value of T, it will 'loop' continuously; that's
because it has nothing better to do! But, if you include a
'special application' (written in assembly language) just
before the 'jmp base', every RESET or 'warm boot' with
keyboard CTRL-C (CTRL and C pressed simultaneously)
will cause your application program to run again (and again,
and...).

Osborne I - AUTOSTART '2'

:d<cr> <— dunp the sector to confirm that i t ' s correct
00 E92A03E9 2103E902
10 20202020 20202020
20 49474854 20284329
30 49474954 414C2052
40 20000000 00000000
50 00000000 00000000
60 00000000 00000000
70 00000000 00000000

037F0458
20202043
20313938
45534541
00000000
00000000
00000000
00000000

44495200
4F505952
302C2044
52434820
00000000
00000000
00000000
00000000

* i * . i ! . iXD IR . *
* COPYR*
IGHT (C) 1980, D
*IGITAL RESEARCH *

:w<cr> <— wr i te i t back to d i sk . . .

If 'auto' has a value of '2', no auto start will occur, and the sys-
tem will immediately execute the CP/M-80 operating system,
displaying only the 'A>' prompt... nice, if you are tired of
waiting out the lengthy sign-on with the 'standard auto start'
provided by Osborne Computer Corporation.

Also, I want to point out that 'patching' any BIOS or portions
of an operating system "on-the-fly" is undesirable from the
standpoint of future system integrity. Any changes or en-
hancements (always meaning l?ug fixes') performed by the
supplier of your operating system or BIOS may cause dis-
placements of the code area that your 'patch' program previ-
ously modified correctly, with unpredictable results (always
meaning 'a feature' if it can't be fixed); this happens because
your little 'trick' is now modifying something else in the new
code, and has the wrong address locations for that portion of
the code that you really wanted to 'patch'!

If you like, you can insert a command string clear to the end
of the sector (but not beyond!), for some really complicated
purposes like assembly invocations with various 'switch'
parameters. This is true for either CP/M-86 or SB-80; just
don't 'patch' into the next sector, as there is executable code
there! Let's see, where were we?

:x<cr> <— ex i t DU, and return to CP/M-80 . . .

A>era b:cpm.sys<cr> <— erase the "o ld" CPM.SYS
A>pip b:=cpm.sys<cr> <— back to whence we came . . .

Note again, that the 'CPM.SYS' file should also be the first
file on your CP/M-86 just as 'SYSTEM.CLP was for SB/80,
and for the same reason!

18 Lifelines/The Software Magazine, June 1982

Applications For AUTOLOADHere is the assembly language patch' (now if I only practiced
what I preach!):

---- Auto Start Patch Program for Osborne I Computer ---- Tired of the kids playing that all-time favorite game 'ERA * .*'
on your games diskette? Well, just AUTOLOAD your favor-
ite flavor of BASIC and the game they want to play - the little
monsters will never see the 'A> ' system prompt.

Do you need some special system hardware initialization to
occur (perhaps for printer port set-up) at 'cold-boot' without
adding it to your BIOS? AUTOLOAD whatever special set-
up you require!

Want to have a customized sign-on for each disk in your li-
brary, to clearly identify its usage? AUTOLOAD is a message
output routine that tells you what the disk is for!

The possibilities are endless...if you think of something
clever, write Lifelines/ The Software Magazine, and share
your ideas with us!

100horg

base of CP/M system memorybase 0equ

auto s tar t vector of fset
WARNING: th is value may have to change
on any new releases of the BIOS or CP/M

244hauto equ

auto start control value, where:
0 = Osborne sign-on message
1 = load AUTOST.COM on 'cold/warm boot'
2 = load AUTOST.COM on 'cold boot' only

0autost equ

note: when using value 1, AUTOST.COM w i l l
• loop’ continuously unless i t is
l inked to load an addit ional f i l e
BEFORE the 'jmp base'

get 'warm boot' vector address to jump table
get auto star t vector of fset
make vector address pointer
force to auto star t control value
<— insert addit ional code here, i f using

a value of 1 for auto start
do 'warm boot'

Ihld base+1
d,auto
d
m,autost

dad
mvi

jmp base

end

KIBITS
YOU FINISHED EDITING? WE'LL WAIT FOR

YOU IN THE LOBBY
JUST ABOUT.
ONE MORE
LINE TO GO

OKEEPOKzJ

ZZZZZZZZZZZZZSZ r-

SYSTEM CRASH/7OH L,Ke

Lifelines/The Software Magazine, Volume III, Number 1 19

Features

SMARTERM Inverse Video
In CP/M-80 For The Apple

Lou P. Rivas
change the instruction at INVFLAG.
Note that the commented Z80 JR in-
structions, which ASM will not assem-
ble, are "hand-coded" by the use of the
DB. If the output byte is not a set in-
verse code, processing will continue at
INVFLAG. If the byte is not to be in in-
verse, INVFLAG will be a JMP to the
standard CONSOLE routine in CP/M.
If the byte is to be in inverse, INVFLAG
is a LXI instruction to load the address
of the standard CONSOLE routine into
register H.
The code between INVFLAG and
GOCPM ensures that the card is in the
normal output state. The code between
GOCPM and NOTCNTL ensures that
the character is not a control. If either
of these is false, the character is sent to
the standard CONSOLE routine. Fi-
nally, the code after NOTCNTL and
before RSETIT "pokes" the inverse
character into the video memory then
sends a "forward cursor" command to
the SMARTERM to advance the cursor
to the next display location.

This routine was developed using
CP/M 2.20B and version 1.1 of the
SMARTERM firmware.
—Renew ------------------------

If your subscription began last
July, we're expecting to hear from
you very soon. If you don't take
time to renew now you'll miss
some vital information — soft-
ware is developing more rapidly
than ever, and you will face some
important decisions about oper-
ating systems, the new fourth
generation software, telecommu-
nications programs and other
new products on the market.

So fill out that renewal form and
questionnaire you've received in
the mail. Send your check right
away. Or you can get out your
VISA or MasterCard and call
Lifelines/ The Software Magazine
Subscription Dept, at (212)
722-1700. The address is: 1651
Third Ave., New York, N.Y.
10028.

Lifelines/The Software Magazine, June 1982

Without discussing the relative merits
of one 80-column card for the Apple or
another, let's address the user with an
Apple, a SMARTERM 80-column card
and the Microsoft Z80 SoftCard. After
all, an 80-column card really enhances
Apple Pascal; and once you have the
card, adding the SoftCard is a very in-
expensive way to discover whether
there is anything to what your S-100
friends have been preaching - as they
take turns playing their favorite games
on your Apple!

Under CP/M, the SMARTERM is cap-
able of performing all required func-
tions except inverse video. Since the
limitation is not in the hardware, it
seemed necessary only to "write some
software" to fill in the missing inverse
function. This turned out to be easier
said than done: the SMARTERM man-
ual, which is excellent in describing
SMARTERM's features, does not indi-
cate how it works. The results of many
hours with a disassembly listing are the
I/O port definitions in Table 1. The ad-
dresses assume the SMARTERM is in
slot 3 and being addressed by the 6502.
To the Z80, the 6502 location $C0B0 is
0E0B0H.

Table 1
SMARTERM I/O Ports
$COB1 - Set 80 column GRAPHICS

mode
$C0B5 - Screen read latch
$C0B6 - 6545 register request
$C0B7 - Switch to 80 column display
$C0BA- Screen write latch
$C0BE - 6545 register write
$C0BF - Switch to 40 column display

Once the details of the SMARTERM
operation were known, it was simply a
matter of following the Microsoft I/O
Configuration instructions in chapter 2
for non-standard peripherals. The I/O
driver listed below was typed into the
source file SMARTERM.ASM with ED
and then assembled and loaded with
the ASM and LOAD commands. The
CONFIGIO program which makes the
patch permanent was RUN from
MBASIC and it presented a menu of

five choices. First enter a "3" to "Load
User I/O Driver Software" and enter
"SMARTERM" when the prompt
"Source File Name?" appears. Respond
"Y" to the "WARNING: A patch has al-
ready been made" prompt - there is an
undocumented patch already in the
space reserved for patches to the CON-
SOLE device. The main menu is now
shown again. Select item "4" to "Read/
Write I/O Configuration Block" and
answer "W" to the "Read or Write"
prompt. The main menu is displayed
one last time - enter "Q" to return to
MBASIC and "SYSTEM" to return to
CP/M.

If you have already installed a custom
I/O driver with CONFIGIO for some
other device, it may be necessary to
first read the I/O Configuration Block
with menu item 4. The read or write
Configuration Block reads or writes the
entire block - that is, all the custom I/O
drivers at one time. If one of those driv-
ers uses self-modifying code, as this one
does, the copy in memory may not be
in the same form as the "boot" copy on
the disk.

The various parts of the program list-
ing are explained as follows. The
EQUates at the beginning of the listing
define the location of the SMARTERM
or CP/M fields to be referenced. The
constants before label CONSOLE are
used by the CONFIGIO program to in-
stall the driver. The code between
CONSOLE and ISALS checks to be
sure there is a SMARTERM card in slot
3 and just continues to the "standard"
CONSOLE routine if no SMARTERM
is found. The standard CONSOLE rou-
tine switches from Z80 to 6502 control
and calls the SMARTERM firmware to
process the byte.
The code be tween ISALS and
INVFLAG checks the byte to be pro-
cessed for the set normal and set inverse
codes. These codes can be changed by
the user, in the CONFIGIO program,
to any unused control character that
does not have a lead-in. If the byte to be
processed is one of these two, the code
branches to either RSETIT or SETIT to

D,NICODES ; AND WHAT TO STORE
H
Z,SETIT ; BIF SET NORMAL
28H,SETIT-l-$
L
Z,RSETIT ; BIF SET INVERSE
28H,RSETIT-l-$

3
85

8

SMARTERM.ASM - Patch to TTY: for ALS normal/inverse display

WRITTEN BY LOU P. RIVAS, DECEMBER 1981

ORIGIN EQU

ORG

0F300H

00100H

INVFLAG JMP 0000
$-2

ALSTATE

; TO CP/M OR "LXI H"

; LOAD SMARTERM STATUS

OLDTTY EQU

LDA
OFF$

R6545

SET

EQU

ORIGIN-CONSOLE ; FAKE-OUT CONSTANT

0E0B6H ; 6545 REGISTER REQUEST ADDRESS

ORA
JR
DB

A
Z,GOCPM+1
28H,GOCPM+l-l-$

; CHECK FOR STATE 0
; TO CP/M IF IN MULTI-BYTE SEQ.

FRMCARD
ALSCARD
SLOT3

EQU
EQU
EQU

0E30BH ; FIRMWARE CARD SIGNATURE
0E30CH ; SMARTERM CARD SIGNATURE
0F3BBH ; SLOT 3 CARD TYPE BUFFER

GOCPM PCHL

MVI A,80H

; TO CP/M

SETNORM
SETINVR

EQU
EQU

0F3A6H ; HARDWARE SCREEN FUNCTION
0F3A7H ; TABLE INTENSITY ENTRIES

ORA
CPI

C
' '+80H

; OUTPUT WITH HOB ON

NICODES EQU 021C3H ; VALUES FOR INVERSE/NORMAL JR C,GOCPM ; TO CP/M IF CONTROL CHAR.
ALSTATE EQU 0F77BH ; SMARTERM STATUS BYTE DB 38H,GOCPM+100H-l-$

NOTCNTL

SC
 M

T)

M

 <

M
 M

cn

 >

> R6545+4 ; DATA TO OUTPUT LATCH
R6545+8 ; AND 6545 DUMMY REGISTER
H ; SAVE CP/M DRIVER ADDRESS
H,R6545 ; 6545 REQUEST REGISTER
M,1FH ; REQUEST R31
A,M ; GET STATUS
80H ; AND ISOLATE UPDATE STROBE
Z,STATUS ; BIF NOT UPDATED YET
28H,STATUS+100H-l-$
H ; RESTORE CP/M DRIVER ADDRESS
C,1CH ; FORWARD CURSOR CONTROL CHAR.

; GO TO CP/M DRIVER

1
ORIGIN
LENGTH

; ONE PATCH

8
8

8
8

88

8

2
4
OLDTTY+OFF$
CONSOLE+OFF$

; PATCH TYPE 2
; PATCH VECTOR 4
; OLD VECTOR GOES HERE
; THIS IS NEW VECTOR

STATUS

FRMCARD ; FIRMWARE CARD SIGNATURE
D,A
ALSCARD ; SMARTERM CARD SIGNATURE
D ; 01 OR 81 IFF ALS CARD
81H

CONSOLE LDA

MOV
LDA
ORA
CPI

; JR
DB

ISALS MOV
LHLD

D,E
A,D
INVFLAG+OFF$

; INVFLAG <- "LXI H"
; INVFLAG <- "JMP"

RSETIT MOV
SETIT MOV

STA
RET

NZ,INVFLAG ; BIF NOT ALS CARD
20H,INVFLAG-l-$

A,C ; COPY OUTPUT BYTE
SETNORM ; GET CODES FROM HARDWARE TABLE S-CONSOLELENGTH EQU

Tips & Techniques
Michael J. Karas sent in this tip on high speed cursor address conversion.

Many currently popular CRT terminals on the market use a new type of cursor addressing that is ANSII compatible. Typical
terminals include DEC VT-100, Callan Data Systems CD-100, and Televideo 950. The direct cursor addressing scheme utilized
is quite a departure from the old standard method used by the ADM-3A, BEEHIVE 100, or TVI-912. The "normal" old way to
position the cursor was to send a sequence to the terminal like:

ESC,Y,row,col

where the row and column are characters that correspond to specific columns and rows of the CRT screen. Typically the se-
quence "ESC, Y,space,space" caused cursor position to the home (0,0) screen position. Row and column positions for other
areas of the screen corresponded to ASCII characters in the ASCII collating sequence starting at the space code (020H).

The new ANSII compatible format varies slightly from terminal to terminal but as an example consider the CD-100 unit. Here
the cursor is positioned with the sequence:

ESC,[,rr ,; ,cc,H

In this case "rr" and "cc" represent the row number and column number in ASCII numeral characters. For example to speak of
row 13 then "rr" consists of the ASCII characters "1" followed by "3" (or in hexadecimal 031H followed by 033H). The short
program given below is an example 8080 assembly language routine that converts a binary number pair in the (HL) registers of
col/ row into the required ASCII sequence to position the cursor on a VT-100 or CD-100 type terminal. An inline coding scheme
is used to transmit the fixed character portions of the sequence. A zero byte indicates "end of sequence". This was done to permit
the same subroutine to be used to transmit other code sequences to the terminal for clear screen, delete line, etc.

/CURSOR POSITION TO (R0W=L) AND (COL=H) LIKE MICROPRO'S WORDMASTER

' (continued next page)
Lifelines/The Software Magazine, Volume III, Number 1 21

CURADDR:
PUSH H ; SAVE ROW COL CODE
CALL SEQOUT /SEND INITIAL ESC, [
DB 1BH, * [' , 0
POP H /GET ROW CODE
MOV B,L
PUSH H
CALL BINASC /SEND AS ASCI I 2 CHAR NUMERALS
CALL SEQOUT /SEND ROW/COL SEPARATOR
DB ' ; ' , 0
POP H /GET COL CODE
MOV B,H
CALL BINASC /SEND AS ASCI I 2 CHAR NUMERALS
CALL SEQOUT /SEND TRAILER CHARACTER
DB 'H ' , 0
RET

/SEND INLINE BYTE SEQUENCE TO THE CONSOLE TERMINAL

SEQOUT:
XTHL /GET SEQUENCE POINTER

SEQOT1:
MOV A,M
INX H
ORA A / IF ZERO THEN SEQUENCE IS
JZ SEQXIT ; . .DONE
PUSH H
CALL CHAROUT /SEND CHARACTER TO CRT
POP H
JMP SEQOT1

SEQXIT:
XTHL /SET STACK RETURN AFTER
RET ; . . .SEQUENCE

1
•

•CONVERT BINARY NUMBER IN (B) TO TWO ASCI I NUMERALS
/SENT TO CONSOLE TERMINAL

BINASC:
XRA A / INITIALIZE 00 BCD NUMBER
INR B

BINASI : /LOOP TO CONVERT BINARY TO
INR A /TWO DIGIT BCD
DAA
DCR B
JNZ BINASI
PUSH PSW /SEND THE MOST SIGNIFICANT
RAR /BCD DIGIT AS ASCI I CHAR
RAR
RAR
RAR
AN I 0FH
ADI ■0'
CALL CHAROUT
POP PSW /SEND THE LEAST S IGNIFICANT
AN I 0FH /BCD DIGIT AS ASCI I CHAR
ADI •0 '
CALL CHAROUT
RET

•
CHAROUT:

; INSERT CODE HERE TO TRANSMIT CODE TO THE
; TERMINAL.
RET

END
Lifelines/The Software Magazine, June 198222

Features
Criteria For
Evaluating Application
Development Software

Steve Patchen
what is to be done. Associative referen-
cing uses some form of an expression
which depicts what is referred to with-
out regard for how it is to be found.
These high level structures thus relieve
the user or developer from dealing with
those details not logically related to the
problem he or she is dealing with.

An example of an aggregate structure
could be an invoice data structure. An
invoice is composed of several logical
groups of data: there is information
about the customer to whom the in-
voice is issued; there is information
about the shipping of the products in-
voiced; there are descriptions of the
products and prices, and there is billing
information about taxes, total due etc.
An example of an aggregate operator
might be "DISPLAY INVOICE FOR
INVOICE NUMBER = '820412'". This
operation would find and display an in-
voice identified by the specified num-
ber. This operation could be used inter-
actively or it might be imbedded in a
program. As part of a program the ac-
tual invoice number would have to be
retrieved from some other source for
each use of the statement. The DIS-
PLAY operator is also an implicit con-
trol structure because it takes actions
based upon assumptions or stored
knowledge about the entities specified.
Associative referencing is used by this
statement because it refers to the in-
voice by specifying a value one of its
data sub-structures must contain.

This expression seems like a natural
way to request an operation of the
computer because it talks in terms
which are related to the problem being
worked on and because it uses natural
language-like phrasing. However, if we
examine this example more closely, we
must realize that the computer could
not do anything without knowing
what an INVOICE or an INVOICE
NUMBER was. It must thus be either
pre-programmed to recognize these
terms or it must have knowledge of
these terms, and implicit control struc-
tures to make decisions based upon the
knowledge it has.

(continued next page)

It is only in the last few years that com-
puter professionals have begun to exam-
ine this area of diverse structures and
have begun to put some order to it.3

Fourth generation languages and devel-
opment systems more strenuously ad-
dress the logical structures which allow
software development to be tailored
closely to a specific application's prob-
lems. Because the real world incorpo-
rates a wide range of possible computer
applications, a system structured to
serve some applications well might not
fit other applications at all. So we ex-
pect fourth generation software to be
restricted to smaller domains of use
than third generation languages are,
implying that there will be even more
fourth generation languages than there
are third generation languages.

The advantages we gain by restricting
this domain of use for development
systems are faster and cheaper develop-
ment, implementation by users expert
in the area of interest but with little or
no experience as programmers, a pro-
totyping capacity which can reduce
study and analysis costs, and de-
centralization of data processing to
put computation power where it is
needed.5

Some of the types of structures which
provide this higher level of treatment in
development of software are aggregate
data structures along with associated
aggregate operators, implicit control
structures which allow specification of
what is to be done without concern for
how it is done, and associative refer-
encing of information and structures. 4
An aggregate data structure is any data
structure which can be treated as a sin-
gle unit but which might actually be
composed of several dissimilar smaller
structures. Aggregate operators are op-
erators which can perform the same
operations on these structures regard-
less of the actual composition of the
structures. Implicit control structures
are facilities providing the how so that
functions can be performed when they
are specified in a form describing only

Last month I introduced some applica-
tion development concepts and a menu
system to help organize development
of application software in the dBASE II
system.

These ideas are part of a new genera-
tion of software emerging in the mar-
ket. Such products are generally re-
ferred to as fourth generation software.
Many products in this generation are
not complete application development
systems, but instead are elements of a
diverse set of tools which help with
some part of the development process.
(Editors Note: Lifelines/ The Software
Magazine intends to review more soft-
ware in this fourth generation.) In or-
der to put these products into perspec-
tive and provide some grounds for
comparison of diverse packages, I will
describe some criteria which will relate
the review subjects to the application
development process.

Prior to this fourth generation, com-
puter software evolved through three
stages of development. The first stage
dealt with the computer on the bits and
bytes level of each particular machine.
The second generation was formed by
the use of symbolic references to ma-
chine operations and addresses in as-
sembler languages. The third genera-
tion of software emerged as an attempt
to provide some machine independence
for software with languages like FOR-
TRAN and PL/I and with operating
system environments.

This third generation of software is still
very volatile, however. Many compu-
ter applications have dynamic and
changing structures and others are so
complex that it is difficult to design
them completely without prototyping
models of the system first. Using third
generation languages makes both of
these situations expensive. Third gen-
eration languages leave a large gap be-
tween the logical structures used in the
final programs and the structures
manipulated by the languages. Systems
created with these languages thus have
a wide variety of underlying structures.

Lifelines/The Software Magazine, Volume III, Number 1 23

These two possibilities reveal two dif-
ferent approaches to fourth generation
software. The first is called very high
level language (VHLL) and the second
is called knowledge-based generation
(KBG).4 VHLL's are usually evolved
from third generation languages like
FORTRAN while KBG s derive their
experience from artificial intelligence
and languages like LISP. There is an-
other technique for program genera-
tion called the build program tech-
nique.6 It uses third generation lan-
guages and program templates to build
programs from information converted
by a specification language into a form
which can be substituted into the tem-
plates. The pieces are then put together
and form programs. This type of appli-
cation generation is the most restrictive
because it depends upon the templates
being appropriate to the functions they
are required for, meaning they are
usually developed to fit a narrow range
of needs. An absolute necessity for this
type of system is the ability to extend
the development facilities by adding
more templates and incorporating code
created the old way.

Extensibility and the ability to link to
program structures written in another
language are actually very important
requirements of any fourth generation
development system. Even more versa-
tile systems can box the user into a cor-
ner during development, because of
some unplanned-for feature, or one
outside the scope of the development
system yet within the scope of the ap-
plication.

In addition to changing the level be-
tween the machine and the application
at which the designer must work, there
is an increasing concern for the interac-
tion between the immediate user and
the computer. This applies to both the
designer of systems and the end user. So
this interface must address the psycho-
logical effects of the system on users
and designers. And it must cope with
the efficiency of tasks the user or de-
signer employs to accomplish his goals.
Every computer system still has to deal
with the four interfaces: the machine,
the machine independent environment,
the application and the user. First and
second generation software had to han-
dle all the details of all four of these in-
terfaces for each application. Third
generation systems relieved the user to
some degree of the machine environ-
ment problems, but the user still must

deal with the other environments on a
low level.

Table R5 covers several important
questions for each of these four views
of computer software. Evaluation of
software which participates in the de-
velopment process should be reviewed
by examining it in light of these ques-
tions. The table groups the questions
under the four interfaces which tie the
computing environment together.
Some of these questions involve the re-
lationship of two or more of these inter-
faces and imply a test on the modular-
ity and cohesion of the different sub-
systems of the computing environ-
ment. I will discuss them below.

Application Suitability

reflected at the application level. It is
this interface which must distribute the
resources of the computer to the re-
quirements of the application. How the
limitations and constraints of the ma-
chine are reflected in the application
must be clearly visible. The second
question about this part of the environ-
ment deals with the tools used not only
for the actual implementation, but also
for optimizing the machines use and
dealing with extensions of the imple-
mentation environment.

It is at this level that we are most con-
cerned about how the reviewed prod-
uct relates to the operating system and
what form data structures and opera-
tions have.

Needs Of The User
And Designer

When a system is designed, the user's
needs have typically been given low
priority, despite pretenses to the con-
trary. This has made the data process-
ing center a frequent battleground;
order is imposed upon data processing
by brute force. As in most wars, the
pressures feeding the turmoil are
economic ones. However, we are
beginning to understand the data pro-
cessing environment a little better and
it is possible to make convincing
economic arguments for considering
the psychological part of the envi-
ronment. The three questions in this
section deal with only some of the ob-
vious points revealed so far. These
questions should be asked for both the
development part of the system and the
use of the final products. 7

The Computer Machine

The only thing which should be visible
during application specification is the
application, and the entities which are
logically a part of it. The first question
in this section asks how easy it is to fit
the application to the computing sys-
tem in a logical manner - without the
distraction of unrelated details. Ques-
tion two asks how completely the de-
velopment system can specify the logi-
cal requirements of the application
problem.

Both of these questions imply the need
for good modular separation between
the specification and implementation
parts of the development system; they
also imply that the specification model
must be able to depict the desired be-
havior of the implemented system in
terms of functional responses to vari-
ous stimuli.

Question three can be satisfied by an
operational specification system which
allows a "walk-through" of the specifi-
cation, or permits interactive imple-
mentation and testing of incomplete
parts of the system. The specification
must be insensitive to incompleteness.
Question four also requests dynamic
structures which allow reworking and
extension of the specification.1

Implementation Concerns

Computer system capacities are fre-
quently exceeded many times over the
life of the system. This means that the
machine environment must be ex-
tended during the use and development
of applications and that it is desirable
to do so without a great deal of disrup-
tion to the operating environment. The
questions in this section are concerned
with the visibility of machine limita-
tions and the ability of the system to
adjust to machine expansions. Porta-
bility of the system to another machine
is also an important concern, so that
the user is not constrained by the cur-
rent machine's expansion limits.

The need for optimization is most ap-
parent at the implementation interface.
The machine environment limitations
have to be handled at this level so
that unrelated ramifications are not

24 Lifelines/The Software Magazine, June 1982

Application Structure reviewer can help the software buyer
by putting a product into perspective
and relating it to other products on the
market. The reviewer must identify the
range of applications for which the
product is suited, as well as those for
which it is not suited.

use of third generation languages by
simplifying some frequently-per-
formed task or by the creation of some
frequently-used structure. This ap-
proach to creating a fourth generation
development environment is a "bottom
up" evolution of tools. It must be exam-
ined from a "top down" perspective to
keep the development process require-
ments in view. Many of these exten-
sions improve programmer perform-
ance, but do not provide any enhance-
ments to the application specification
part of the system. Some development
tools may not differentiate between
any of the four interfaces with which
they deal. It is important to note these
variations, because they can affect the
flexibility and usefulness of the tool in
question.

Table R6 attempts to provide a more
complete picture of the development
system from the viewpoint of the appli-
cation structures. It allows the reviewer
to plot the completeness and complexi-
ty for each part of the functional divi-
sions of the business application. A fa-
cility is considered to exist if it is possi-
ble to specify what is desired without
writing code in a procedural language.
If a procedural language is provided as
an integral part of the development
system, and its language features re-
flect the structures used by the system,
the reviewer might consider the system
capable of complex systems; however,
it is not easily capable of them.

Summary

In addition to these four logical divi-
sions of the data processing environ-
ment, there are identifiable functional
segments of the application system. In
general, a business application in-
volves data entry, data management
and reports or other output. There is
more than one possible level of com-
plexity for each of these parts. That is,
data entry may involve simple append-
ing of new records to a file structure or
it may involve entry into a set of inter-
related transactions. Data manage-
ment may be simple file management
or it may involve a complete database
management system. Reports can vary
from simple listings of files to complex
derivations from large databases.
Within the reporting and data manage-
ment systems there can also be simple
or complex algorithms or functions to
perform transformations upon data.

There already exists a variety of both
manual and automated techniques to'
assist in the development of various
parts of the application. Individual
programs are assisted by decision
tables, flowcharts and function librar-
ies. Report design is enhanced by out-
put-input matrices, data dictionaries
and data flow diagrams. Database
management system data design can
utilize data dictionaries and automated
data design systems. Transaction pro-
cessing is implemented with the aid of
HIPO diagrams, data dictionaries and
data flow diagrams. There are also
manual design techniques for com-
pletely integrated business systems;
they usually boast such names as struc-
tured analysis2 and structured design.9

Software packages which attempt to do
everything are usually called applica-
tions generators', parameterized appli-
cation packages', or 'application devel-
opment systems'.

Many of these development systems
provide good facilities for part of the
application, but are weak in dealing
with other elements.8 The usefulness of
any tool is dependent upon its ability to
handle the particular problem at hand.
Therefore, if the systems available are
biased, a system slanted towards the
application must be chosen. If a com-
bination of tools is required because an
adequate complete system is not avail-
able, the compatibility of the various
tools on hand must be considered.
Many tools only attempt to extend the

1) Balzer, R.B. and Goldman, N. "Prin-
ciples of good software specification
and their implications for specification
languages", AFIPS Conference Pro-
ceedings Vol. 50 1981, NCC, AFIPS
Press, Arlington, Virginia 1981, pp.
393-400

2) DeMarco, Tom, Structured Anal-
ysis and System Specification, Your-
don Inc. New York,1978

3) Dolotte, T.A., Bernstein, M.I.,
Dickson Jr., R.S., France, N.A., Rose-
blatt, B.A., Smith, D.M., Data Proces-
sing In 1980-1985; A study of Potential
Limitations to Progress, John Wiley &
Sons, New York 1976

4) Hammer, M. and Ruth, G., "Auto-
mating the Software Development
Process", Research Directions in Soft-
ware Technology, The MIT Press Cam-
bridge, Mass. 1979, pp. 767-792

5) Martin, James, Application Devel-
opment Without Programmers, Pren-
tice-Hall, Englewood Cliffs, N.J. 1982

6) Rice, John G., Build Program Tech-
nique: A Practical Approach for the
Development of Automatic Software
Generation Systems, John Wiley &
Sons, New York 1981

7) Shneiderman, Ben, Software Psy-
chology: Human Factors in Computer
and Information Systems, Winthrop
Pub., Cambridge 1980

8) Whitney, V.K. and Morse, J.G.,
"Choosing application development
tools and techniques", AFIPS Confer-
ence Proceedings Vol. 50 1981, NCC,
AFIPS Press, Arlington, Virginia 1981

9) Yourdon, E. and Constantine, L.L.,
Structured Design, Yourdon, Inc., New
York 1975

Important questions must be asked by
anyone who wishes to use data proces-
sing for business needs. What are the
requirements of the application I wish
to implement and how do I satisfy these
requirements? A review of any soft-
ware which participates in the develop-
ment process must attempt to provide
the reader with ways to answer these
questions. Many purchasers of devel-
opment software will have little or no
experience with business system devel-
opment. They need to be informed of
the tools they will need and the prepa-
rations they will have to make before
attempting any such task. Product
manuals seldom make any attempt to
orient the system user to the develop-
ment process. They do not inform the
user what other resources and tech-
niques will be needed in addition to
those provided by the system. The See next page for Tables.

Lifelines/The Software Magazine, Volume III, Number 1 25

TABLE R6
Application Development Facilities

Functional
Parts

Completeness and Complexity of Facilities

Little
or None

Some Complete
& Complex

Easily
Complex

Individual
Program
Development

Input
Transactions

Data
Management

Reports and
Queries

Integrated
Systems

TABLE R5
Application Generation Systems

I. APPLICATION SUITABILITY:
1. Does the method required for specifying

applications reflect an understandable
and logical model of the domain of appli-
cations for which it is intended?

2. Can the application be completely
specified?

3. Is the implemented system testable against
the specification for the system or vice
versa?

4. Does the development system make it
easy to extend and rework the specifica-
tion and implementation?

IL IMPLEMENTATION SUITABILITY
1. Are the restraints and limitations of the

implementation environment made clear
to the designer?

2. Is the set of tools for doing system imple-
mentation complete or are other inde-
pendent tools required?

3. Is the implementation environment exten-
sible to include new components or com-
ponents from other systems?

III. USER/DESIGNER SUITABILITY
1. Are the user interfaces developed by the

system and those used to develop the ap-
plication understandable in terms of the
tasks to be performed or do unrelated de-
tails obscure the operation?

2. Does the user get a feeling of having com-
plete control of the system or do obtuse
messages and unexplained operations
leave him in confusion or frustration?

3. Does the system seem to have been de-
signed with psychological criteria for
short term memory, closure of tasks,
response time and user control in mind?

IV. MACHINE SUITABILITY
1. Are limitations imposed by the machine

environment understandable in terms of
application limitations and are applica-
tion requirements translatable to machine
requirements?

2. Are any provisions made in the develop-
ment system to allow optimization in dif-
ferent machine environments?

3. Is it possible to extend the machine
environment without major changes to
applications already implemented?

Software Notes
For (JOBOUHU Users
The following are the current CRT DRIVER modules for
COBOL-80.
CDADDS.MAC ADDS REGENT TERMINALS
CDADM3.MAC LEAR-SIEGLER ADM-3A TERMINALS

LIFEBOAT CP/M (prior to 2.25) for
TRS80 II COMPUTERS

CDADM31.MAC LEAR-SIEGLER ADM-31 TERMINALS
LIFEBOAT CP/M for DATAPOINT
COMPUTERS
LIFEBOAT CP/M 2.25 + for TRS-80 II
COMPUTERS*
ANSI STANDARD TERMINALS
BEEHIVE and CROMEMCO
TERMINALS
HAZELTINE 1500 TERMINALS and
ARCHIVE COMPUTERS
INTERTEC SUPERBRAIN TERMINALS
and COMPUTERS
PERKIN-ELMER TERMINALS
SOROC IQ TERMINALS
HEATH/ZENITH TERMINALS and
COMPUTERS
ZENTEC ZEPHYR TERMINALS

CDANSI.MAC
CDBEE.MAC

CDHZ15.MAC

CDISB.MAC

CDPERK.MAC
CDSROC.MAC
CDWH19.MAC

CDZEPH.MAC
* Note: See also an article in the April '82 issue of 80 Micro-
computing by James Korenthal for an alternate TRS-80
model II screen driver. It will only work with CP/M versions
prior to 2.25, but includes information on how to turn the
cursor on and off. It also includes some ideas on putting a bell
up on the silent screen.

Lifelines/The Software Magazine, June 1982
26

Volume 81, Catalogue and Abstracts

CP/M Users Group
type on the printer, restricts the files it
backs up (no .BAK, .SYM, etc.), and
then does the actual backup. It reports
what files are on each disk, etc. Very
complete.

BAUDSET.ASM, .DOC is John M.
Kodis' program to facilitate baud rate
changing on a Cromemco Tu-Art
board or a Micromation Doubler
board. The program could be modified
for other UARTs.

CRCK.COM is Keith Petersen's pro-
gram - checks all files.

EDITM. ASM, .DOC, .COM is an up-
date of CPMUG volume 16 editor,
claimed to be faster than ED.COM,
and has additional ability to write arbi-
trary lines to disk. Useful only if ED is
your only editor, and you want a bit
more.

FLOPCOPY.ASM, .DOC is Gary
Young's program to copy a floppy disk,
using a hard disk as intermediate stor-
age. This would be used by someone
with a hard disk, but only a single flop-
py, who wanted to copy a floppy.

POW2.ASM, .COM, .DOC, .MAN,
.TST comprise a text formatter ,
"Processor Of Words". By Herman
Watson, from Dr. Dobbs Journal No.
29, page 20. POW2 revised from
CPMUG Volume 36 by William R.
Brandoni. Enhancements: CP/M-80
base alterable for non-standard sys-
tems; new User's Manual; files bigger
than memory; bug fixes; viewing the
formatted output on a CRT terminal;
:MD, :CD, and :CU commands are
provided to double strike and under-
line. Uses C/R overprint technique.

SUPERSUB.ASM, .DOC, .COM is
Ron Fowler's replacement for SUB-
MIT. Allows SUB file nesting, and also
an immediate mode where no SUB file
need be edited first. Written up in
January, '82 Lifelines/ The Software
Magaz ine .

(continued next page)

Catalog

DESCRIPTION: CP/M Utility disk. Submit replacement, editor, text processor,
hard disk backup utility, etc.

NUMBER SIZE NAME COMMENTS

3K
-CATALOG.081
ABSTRACT.081

Contents of Vol. 81
Abstract of files on volume 81.

81.1 10K AUTOLOAD.COM Write initial CP/M command
81.2 3K AUTOLOAD.DOC into CCP on disk.
81.3 28K BACKUP.ASM Back up hard disk to multiple
81.4 7K BACKUP.DOC floppy disks
81.5 7K BAUDSET.ASM Set baud rate for
81.6 2K BAUDSET.DOC serial board
81.7 25K EDITM.ASM Update of CPMUG volume 16
81.8 3K EDITM.COM editor, with new
81.9 4K EDITM.DOC features.
81.10 16K FLOPCOPY.ASM Copy floppy via hard disk
81.11 2K FLOPCOPY.DOC when only 1 floppy drive
81.12 42K POW2.ASM "Processor of Words" - text
81.13 5K POW2.COM processing prog.
81.14 4K POW2.DOC // //
81.15 23K POW2.MAN Manual on above
81.16 2K POW2.TST Test document
81.17 22K SUPERSUB.ASM Super submit program,
81.18 3K SUPERSUB.COM allowing nested submits,
81.19 15K SUPERSUB.DOC etc.

—K FILES.CRC CRC of files on this disk
2K CRCK.COM Produce CRC of files
5K U-G-FORM.LIB CPMUG submission form

applications, or for loading a special
driver, etc. Unless your BIOS is speci-
fically modified to do so, the auto-com-
mand will execute on both cold and
warm boot.

BACKUP. ASM, .DOC is Gary
Young's very complete program for
backing up a hard disk to multiple flop-
pies. It prints a master directory by

Abstracts

AUTOLOAD.COM, .DOC is Willis
Howard Ill's program to patch a com-
mand into CCP so it will be executed
automatically when CP/M-80 boots.
The command is patched directly to the
CCP image on the boot tracks of your
disk. Useful for auto-loading an
MBASIC menu program for dedicated

Lifelines/The Software Magazine, Volume III, Number 1 27

Macros of the Month
Edited by Michael Olfe

PMATE PC takes advantage of this by configuring
the keypad cursor motion keys for geometric cursor
motion and the control-keys for line-oriented cursor
motion. Both are simultaneously available - in other
versions one has to make a choice.

Apologies to those of you who experienced panic on not seeing
'Macros Of The Month" in the last issue of Lifelines/ The Soft-
ware Magazine. Rumors of its death were slightly exaggerated.

The 8086/8088 version of PMATE has arrived in MS-DOS,
PC-DOS, and CP/M-86 versions. All share some significant
new features, listed below.

1- Disk buffering is greatly expanded. This results in
faster operation and less disk access.

2-The terminal configuration files ("CNF" files) allow
assignment of any key to any permanent macro. This
had to be done in other versions of "PMATE" by
modifying and assembling "IOPATCH.ASM".

3- Configuration options allow the editor to come up in
Insert or Overtype mode automatically. Thus a
"PMATE" can be configured to (a) come up with
menus or operator prompts of an arbitrary and fam-
iliar kind, (b) process a file, and (c) exit - without ever
entering command mode or requiring that the opera-
tor know anything about how to operate "PMATE"
on the root level. OEMs take note.

4- New single-keystroke commands: Overwrite /Insert
mode toggle key, erase line forward/back from cur-
sor, page up and page down, cursor to beginning/end
of line.

The PC version of PMATE is particularly interesting and has
mated nicely with the IBM keyboard and screen. For example:

1- PMATE-PC senses the kind of display in the system
and adapts itself automatically to either the mono-
chrome or color display.

2-The PC version is optimized for the IBM PC screen
and does not rely on IBM's built-in screen-handling
routines. This editor is fast!

3-A11 the function keys are implemented as user-
defined macros.

4- All the keys on the right keypad are implemented.
Besides the four cursor motion keys, the assignments
are: beginning/end of line (a toggle), forward/back
one screen, delete line forward/back from the cursor.

5-This version takes advantage of the unique code pairs
generated by each key on the IBM keyboard. Back-
space and control-H do not necessarily have to per-
form the same function, nor do control-M and re-
turn. Each key on the keyboard has a unique code
and can be assigned a unique function in PMATE.

The macros this month are designed to speed repetitive text-
processing tasks. One helps you edit a group of disk files
quickly; one is designed to speed editing of cursor-adressing
statements, and the last auto-loads macros into their execu-
tion buffers.These are by Andrew Hughes of Toronto, Canada.

Anybody who has had to make alterations on a group of files
in one sitting has probably experienced the drudgery of load-
ing them in one by one, having to repeatedly list their names
to see which one is next. This happened to me, and I wrote a
macro to do the job. Mr. Hughes wrote a much better one,
which is this month's winner, listed below. The macro lists the
file names for any drive on the screen and you merely posi-
tion the cursor on the file name you want to edit. You can also
specify the output file name, and it can be on a different drive.
The macro loads the file and you proceed with the edit. When
done, you can save the edited file and repeat the process. If
the processing to be performed on all the files is identical, a
macro can be called within a loop to do the work. You could
also change this macro to do something to a whole group of
(ambiguous filename) files without any operator intervention.
; Permanent macro called below to enter a string of characters

*Xi[gEnter: DEL : CR to end$
@k=127 [-d*][@k=13[%]@ki]]

; Permanent macro to load and process all items on a disc

; successively.

; Authored by Andrew Hughes of Toronto, Ontario, Canada

/Uses buffer 0 permanently, to hold the directory, and variable 0

;permanently, through the whole session. Variable 0 must be 0

;before calling the macro. The first time use 0v0.d$$ to call it,

;and thereafter, just .d$$.

; Uses buffer 1 during the macro.

~Xd be@0=0

[
xklv0
g Enter input drive or CR$
@k&"_="B [xsb]
@k&" ="C [xsb]
xl$i----

$
]
Iblm zblg

blea ibtexkxf$ z-dqr

; end of initialization

; move NAME to buffer 1 and

; to bottom of Directory list
; prepare buffer 1 for execution

gEnter output drive & name or CR$

@k=13[i $@ki.i] .la ; execute buffer 1

; on first using the macro, clear buffer 0

; and set variable 0
; get directory from right drive (CR=A:)

; Here the processing program could be appended

; or a macro could be called

The second was written to help in editing dBASE II command
files, but could be adapted for any language which includes
cursor-positioning statements. It simply adds one to the num-
ber under the cursor. Suppose you have constructed a screen
with cursor-positioning commands, and decide to add an-
other line to the middle of the screen. Simply go down the list

Lifelines/The Software Magazine, June 198228

of commands invoking the macro on the command line. This
saves much time. Note, however, that the macro can handle
only two-digit numbers since the largest digit for cursor ad-
dressing on most terminals is 80.

The third allows you to construct auto-loading macros, i.e.,
macros which are loaded into the buffers for which they were
written. All that is necessary is to write the macro with a
header and trailer specifying its execution buffer, as in the
macro below. The only restriction imposed is that the body of
the macro cannot have the string ";@end" in it, and the
header must precede any other similar string in the macro.
The loader routine should be made into a permanent macro.
This very convenient macro allows you to put up to nine
macros in a library and load them automatically into their
correct buffers.

; Macro to add a number to the asc i i dig i t (s) under the cursor
; start ing number must be stored in v0

; @b=3 macro executes in any buffer — 3 used here

@0=0{gYou must store start ing count in value register 0 f i rs t$%}

[
s@ $ts,$-m#d ; delete old x

@0\va01
g Space to cont inue, any other character to quit $

(@k<32 ! @k>32)
]

0v0

;@end
; Macro to auto-load macros

; loads a macro or group of macros into buffers specif ied by their headers
; format of header: @b=n, where n=0-8, and the f i r s t @b in the f i le is
; the " j imp adress" , or the buffer that w i l l be executed

; the end of each macro group has the l ine ";@end"

qab9eztxiAa$
#s;$@e -m s;$s@b=$@tvl#
[
es;$@e_ -m t s@b=$
@tv0
s;@end$
@0="0{#bnT}
@0="l{#blm*}
@0="2{#b2rrT}
@0="3{#b3nT}
@0="4{#b4nT}
@0="5{#b5nT}
@0="6{#b6rrT}
@0="7{#b7nT}
@0="8{#b8nT}

]

@1="0{.0$*[''}
e i»* l { . ! $ * (* }
@1="2{ .2$* [*}
@1="3{ .3$~["}
@i="4 { .4$ “ r }
@1="5{.5$*['‘}
@l=w6{.6$~[~}
@1="7{ .7$* [*}
@ i= "8 { . 8$ " r j

; get the f i l e named by cal ler into register 9
; store the "j imp adress"

; f ind beginning of header
; store the buffer number
; f ind end of this macro
; kludge — this version of pmate doesn' t
; al low b@nm were @n is var iable

; a l l moved

; now jump to f i r s t one

To ARM THE
WARHEAO, „
< PUSHCIRLA.

Lifelines/The Software Magazine, Volume III, Number 1 29

Features

8080 Assembler Programming
Tutorial: Subroutines ___________

Ward Christensen

The 8080 instructions have been covered individually, and
now it is time to put them to work as a team, doing useful
work that no single instruction can perform. Initially I will
avoid CP/M-80 specific routines, so that you will get some
useful routines which apply to both CP/M-80 and non-
CP/M-80 systems. There will be subroutines for data move-
ment, arithmetic, logical, and input/output.

Data Movement Subroutines

jmove MESSAGE (12 long) to BUFFER

LXI H,MESSAGE ;set ’’from” register

LXI D,BUFFER ;set ”to” register

LXI B, 12 ;set length

CALL MOVE ;move the data

MESSAGE DB ’Test message’

I purposely set up the registers this way, so they'd be compati-
ble with the Z80 single-instruction LDIR (load and incre-
ment), which allows the Z80 to perform the MOVE subrou-
tine in a single, two byte instruction. But first, let's look at the
8080 MOVE subroutine:

A very simple move subroutine might be one that filled a
block of memory with a single character, perhaps to blank
out a buffer. Typically you know exactly how long the buffer
is, so can simply decrement a count as you store the data.
Here is such a subroutine:

;F ILL: f i l l s the buffer pointed to by HL,

;w i t h spaces. The buf fer length is in BC. Routine io move a s t r i ng from (HL)

to (DE) , length in BC

MOVE MOV A,M ;Get source byte

STAX D ; Store at dest inat ion

INX H ;Bump source pointer

INX D ;Bump dest. pointer

DCX B ; Decrement count

MOV A,B ;Get B,

CRA C ; Or w i th C,

JNZ MOVE ; 1oop i f BC not yet zero

•
RET otherwise ret from MOVE

FILL MV 1 M,’ ’ ; store 1 space

INX H ; po in t to next byte

•
DCX B ; decrement count

Note that although BC has been decremented, the 8080 does
not set the PSW flag bits to indicate whether or not the result
was zero, so it is necessary to test BC for zero. This is per-
formed by ORing B with C. Only if both B and C are zero will
the result be zero.

MOV A,B ;get B,

ORA C ;0R i t w i th C

JNZ FILL ; jmp i f B or C i sn ’ t zero

RET ; return, BC is now zero

A more common need is to move a string of data from one
place to another. There are typically two ways to define a
string: (1) by length and (2) by some special ending character
such as a carriage return or a binary 0.

In the first case, where the length is known in advance, I will
use the BC register pair to hold the length. HL will point to the
source field, and DE will point to the destination field. I will
call the subroutine "MOVE". To use it, I just load the
registers, and call the subroutine. As an example, let's move a
character string consisting of the words "Test message",
which is 12 bytes long, to an area called BUFFER:

Back to the Zilog Z80: Although I recommend using the
above move routine in your programs (so they will run on
either an 8080 or Z80), there may be people who are writing
code strictly for their own use, and are confirmed Z80 users.
They should simply code:

;Z80 spec i f i c move subroutine

MOVE DB 0EDH,0B0H ;Z80 ”LDIR”

RET ; Return after executing

I f you had a Z80 assembler, you ’d code:

MOVE LDIR ;do the move

RET ; Return after executing

Lifelines/The Software Magazine, June 198230

16-Bit Negate

The 8080 cannot negate a value directly. A "hack" technique
for doing it on 8-bits would be to simply subtract the value
from zero. Suppose the value in A was to be negated; A might
contain a 3, and you might want the value —3:

MOV B,A ;Save value in B

XRA A ;Zero A

SUB B ; Subtract value

(A) now contains the negative of what it originally had.

The 8080 contains a ones-complement instruction, CMA.
Ones complement simply means flipping the value of each
bit. In binary arithmetic, the term "twos complement" means
the same as negative. Ones complement does not produce the
negative of the originaTvalue, as you can see by the following
example:

In either case, the "subroutine" is only a two byte instruction
and a RET, so it typically would be coded inline rather than
as a subroutine.

Variable Length Move

Some languages, notably the "C" programming language,
use strings terminated by a special byte, rather than dealing
with fixed-length strings. "C" uses a zero at the end of the
string. A move routine to move such strings would be:

; va r i ab le length move subrout ine.

;(H_) = inpirt s t r i ng , (DE) = output s t r i ng .

; input s t r i ng is terminated by byte of 00. The

j byte of 00 is copied to the output s t r i ng

MOVEZ MOV A,M ;Get source byte

STAX D ; Store at dest inat ion

INX H ;Bump source pointer

INX D ;Bump dest. pointer

CRA A ; Is (A) = zero?

JNZ MOVEZ ;No, loop un t i l done.

RET ; then return

MV 1 A,1 ;A=0000 0001

CMA ;A=1111 1110

INR A ;A=1111 1111

INR A ;A=0000 0000

That's about all there is for data movement. I'll get into some
specific uses for these subroutines later (for instance, for
moving file names around in preparation for CP/M-80 file-
related commands).

Arithmetic Instructions

The point of this example is that if CMA did produce the
negative of the 1 producing — 1, then one INR A would have
incremented it back to 0. Instead, two INR instructions were
required. In general, to produce the negative of a number, a
single INR A must follow the CMA. This yields a simple
"negate" subroutine:

;Get ones complement

;Make twos complement

; (negat ive)

NEGATE CMA

INR A

RET

You will typically be dealing with two kinds of arithmetic in
8080 assembly language: binary and ASCII. Since the 8080
only supports 8-bit arithmetic, and the 16-bit add instruction
DAD, subroutines will have to be used for anything more.

Let's start with some basic binary arithmetic: ADD, SUB-
TRACT, and NEGATE.

DAD D

will add the contents of DE to HL, leaving the result in HL.

16-Bit Subtraction

A subtraction is not quite as simple. It requires using an 8-bit
subtract on the low bytes, then a subtract-with-borrow on
the high bytes:

This is not a likely candidate for an honest-to-goodness
subroutine, since it is only three bytes, but would take a three
byte call instruction to call it. It thus would be called "in line",
i.e. by directly coding the instructions CMA and INR A.

A more suitable candidate for a subroutine would be a 16-bit
complement. Because DAD adds to the HL register pair, HL
may be considered to be a 16-bit accumulator, so typically a
16-bit complement subroutine would be expected to work on
HL:

; return HL—HL

NEGHL MOV A,H ; complement

CMA ; b i t s in

MOV H,A ; H
MOV A,L ;then

CMA ; in

MOV L,A ; L

INX H ;then make twos

; double subtract DE from HL

DSUB MOV A,L ;Get low byte of HL

SUB E ; Subtract low byte of DE

MOV L,A ;Put answer back

MOV A,H ;Get high byte of HL

SBB D ; Subtract high byte of DE

; w i th BORROW

MOV
RET

H,A ;Put answer back

complement

The first six instructions produced the ones complement of
HL. The final INX then added one to the ones complement,
producing a twos complement, or negative of the original

(continued next page)
Lifelines/The Software Magazine, Volume III, Number 1

Develop the answer by going a digit at a time, multiplying the
previous result by 10 then adding in the next digit, repeating
this until there are no more digits.

I qualify this subroutine by stating that it only handles
positive numbers. A " — " sign will not be handled. I think
with a little imagination, you could see how the start of the
routine could test for a and if there was one, remember
to call the 16-bit negation routine discussed earlier.

The key part of this routine is the multiplying by ten. I men-
tioned this back in the "DAD TRICKS" part of the tutorial. It
multiplied by 10 by simply using DAD D and DAD H. Here's
the entire routine:

number. Note that the entire number was incremented (I used
INX) and not just each 8-bit half of it (via INR).

ASCII Arithmetic

The most common forms of ASCII arithmetic encountered in
assembly programming are:

1-counting in ASCII.
2-converting numbers from ASCII to binary
3-converting numbers from binary to ASCII

ASCII COUNTING: A typical use would be to count
something, simply incrementing a value each time some con-
dition is met. For example, an extended directory program
may wish to count how many files it found. One means
would be to maintain a binary count, then convert it to
ASCII for printing. However, if you have no other need for
such a conversion routine, I'm sure you'll find this simple
ASCII increment routine more suitable:

First, let's define the message that is printed. I'll put a special
character, at the end of the message:
MESSAGE DB ’There are ’

COUNT DB ’ ze ro f i l es$ *

Now let's define a subroutine called "ADD1", which adds one
to the count. To call the routine, point HL to the low byte of
the ASCII number, and call ADD1. It does "pretty much
what you'd expect"; it simply adds one to the digit, and if the
sum is greater than nine, makes it a zero, and backs up one
column,and increments it. But you might be surprised to note
that it simply branches to itself to do the carry, and that a very
simple instruction may be used to maintain the leading spaces
on the number, so it prints " 3 files" instead of "0003 files":

;Add 1 to an ASCI I number. FL po in ts to the

; un i t s d i g i t of the number to be incremented.

;ASCI I io b i na ry rout ine.

; (HL) po ints to ASCII i npu t , terminated by any non-ASCI I

jcharacter. The de l im i t e r character is returned in (A)

; i f you want to check i t . The b i na ry answer is in FL.

; Registers BC, DE clobbered.

ASCIBIN XCHG jmove pointer to BC.

LXI H,0 ; In i t answer

ASCBLP UDAX D ;Get input character

INX D ; po in t to next

CPI ’0 ’ ; compare to character zero,

RC ; and return i f less

CPI ’9 ’+1 ; compare to 1 h ighe r than ’9 ’

RNC ; return i f more or =

SUI ’O' ; turn into b i na ry

MOV B,H jcopy pa r t i a l answer

MOV C,L ; to DE for x by 10

DAD H ;HL = 2 x o r i g i na l number

DAD H ;FL = 4 x o r i g i na l number

DAD B ;HL = 5 x o r i g i na l number

DAD H ;FL =10 x o r i g i na l number

ADD L ;add current d i g i t

MOV L,A ;put back answer

JPP ASCBLP ; loop un t i 1 done.ACO1 MOV A,M ;get d i g i t

ORI ’O’ ; change poss ib l e ’ ’ to ’zero '

INR A ;add 1 to i t

MOV M,A ;save i t back

;g°+

CPI
RNZ

a carry

»9’+1 ; i s i t 1 more than ’ 9 ’ ?

; no, Jus t return

MV 1 M, ’ 0 ’ ;set current d i g i t to zero

DCX H ;back up to next h igher d i g i t

JNP ADD1 ; start al 1 over

Since this is the longest subroutine covered so far, let me go
into detail on every instruction to make sure everyone
follows. If you understand it without further explanation,
skip to "BINARY TO ASCII CONVERSION".

"ASCIBIN" is the name of the subroutine: ASCII to
BINARY.

The routine makes use of the DAD instruction, which always
adds to HL. Therefore, I decided early on, to make HL free,
and thus the XCHG instruction. It swaps the contents of DE
and HL. I don't really care about the fact that it swaps, but
merely want to move HL to DE. I could have done:I think the ORI '0' is a "neat trick", to allow the leading spaces

to be easily handled, without even explicitly looking for
them. It works because the '0' is a 30H, or 0011 000 binary.
Since a space is a 20H or 0010 0000, ORing in the 30H pro-
duces a 30H, or 'O'. Similarly, if the number has been in-
cremented, say, to 7, it is then 37H, or 0011 0111, and ORing
it with 30H leaves it untouched.

ASCII TO BINARY CONVERSION: How would you con-
vert a number from ASCII to binary? How does this sound?

PUSH H ;0ne way to copy DE to FL,

PCP D ; but slow

and as a matter of fact, this is a very straightforward way to
copy a register pair to another. I strongly dislike it for
aesthetic purposes however, since it wastes time - stack in-
structions are always costly. A better way would be:

Lifelines/The Software Magazine, June 198232

Now comes the multiply by 10. Since the 8080 instructions
can only add, and not truly multiply, it takes the right com-
bination of adds to produce a multiply by 10. It will be
necessary to add the number to itself (DAD H), and also to
add the original number, after doing some DAD H instruc-
tions. Thus, I copy the partial answer from HL to BC, via
"MOV B,H"and "MOV C,L".

Then, the sequence "DAD H", "DAD H", "DAD B", "DAD
H" converts HL into 10 x HL.

Finally, the new digit is added. Ideally, the digit should be
added to L, but since you can only add to the accumulator (or
do 16-bit adds to HL), I add L to A instead, via "ADD L", then
put L back via "MOV L,A".

Finally, the subroutine JMPs back to the top of the loop via
"JMP ASCBLP".

BINARY TO ASCII CONVERSION: Since converting
from ASCII to BINARY involved multiplication (by 10), it
seems logical that conversion from BINARY to ASCII would
involve division. This is true. However, just as the multiplica-
tion was really just some adds, the division will be some sub-
tracts.

To simplify things, the output will not be leading-zero sup-
pressed.

Again I'll show the routine, then discuss it in detail. The
technique is to essentially divide the number by 10000, then
store the quotient as the number of 10000's in the original
number, then divide by 1000, then 100, then 10, and finally
store the remainder. This will thus develop a 5-digit ASCII
number.

MOV D,H ;a better way to copy
MOV E,L ; DE to HL.

This takes two bytes of instructions, the same as the PUSH
and POP, but since it uses no stack instructions, it executes
much faster. However, if I didn't care about keeping the data
in HL when moving it to DE, a simple:

XCHG

is the best solution, so that is what I used to place the pointer
to the input data into DE.

The "answer" must be initialized. I have determined that the
answer will be developed in HL, so decided to simply keep it
there all along. I initialize it to zero by "LXI H,0", so that if no
valid ASCII data is found, a zero is returned in HL.

"ASCBLP" is the label on the main processing loop of the
subroutine.

"LDAX D" gets an ASCII character from memory, and "INX
D" points to the next character.

The character must be between '0' and '9', to be a valid ASCII
numeric digit. Using my old memory aid "C.A.L." (Carry if
Accumulator is Lower), I test to see if the character loaded is
less than a 'O', by "CPI 'O'. Since an ASCII '0' has a value of
30H, any character less than that, such as a carriage return
(ODH) will cause carry to be set.

The "RC" returns if carry was set, as I have no more ASCII
digits to process.

I get to the next instruction if the character was not less than
'O'. I now want to test if it is between '0' and '9'. I cannot test it
via "CPI '9'", because, from C.A.L. rule, carry will only be
set if the answer is LESS THAN '9'. However, '9' itself is valid,
so really, I want to know if less than or equal to '9'. I could:

;ASCI I to b i na ry conversion. HL = b i na ry number,
; (DE) points to output bu f fe r . Number treated as uns igned .

ASCBIN LXI B, -10000 ; compute the ten-
CALL DECDIG ; thousands d i g i t ,
LXI B,-1000 ;then the

CALL DECDIG ; thousands,
LXI B , -100

CALL DECDIG ; hundreds,
LXI B , -10

CALL DECDIG ;tens,

MOV A,L

CRI ’0»

STAX D ;store f i na l d i g i t
INX D ;bump pointer,

•
RET ; and return

CPI

JC OK

RNZ

; is i t less than ’9* ?

; yes, i t i s OK

; return i f not = *9 ’
OK:

Again, there is nothing wrong with programming like this - it
is what you might directly translate from the thought "less
than or equal to '9'". However, a little thinking will show you
that if you do the CPI for the character which is one more
than '9', then carry will be set for values including the '9'. You
don't have to scurry to find out what character is one more
than '9' (it is ':' just for the record). Instead, let the assembler
do your work for you, by coding: "CPI '9' + l".

Since we have already returned for any character less than 'O',
a "RNC" will return if the character is not 'O' — '9'.

At this point, the character is a digit from '0' to '9'. The first
step in making the binary number is converting this single
digit to binary, by a "SUI '0'" instruction. You might see such
an instruction commented as "subtract ASCII offset" or "sub-
tract ASCII bias", meaning that the ASCII number for 0, i.e.
'O', is 30H, and the offset from "true" zero is thus 30H or 'O'.

Lifelines/The Software Magazine, Volume III, Number 1

This subroutine divides HL by BC, returning the quotient in
A, expressed as an ASCII digit. Only useful when the quo-
tient is between zero and 9, as it would be in a binary to
ASCII conversion routine.

DECDIG MV I A , ’ 0» -1 ; i n i t (see de ta i l s be low)
DECLP IhR A ;add 1 to quot ient

DAD B ; "subtract”
(continued next page)

"DECLP" is the looping label for the subtract. "INR A"
counts one quotient.

"DAD B" is the "subtract" itself. If the subtract was able to be
made, it produces a carry. This is the opposite of addition, in
which carry would indicate the sum was too large. Thus, "JC
DECLP" loops as long as the subtract could "fit".

Then, "STAX D" stores the ASCII digit, and "INX D" bumps
the pointer to be ready for the next digit.

Now the first problem. The most reasonable way to detect
that you couldn't subtract any more, was finding carry no
longer set. Trouble is, one of the negative divisors has been
added. Since there is no double subtract, it is necessary to do
a 16-bit subtract by complementing and adding.

To do the complement, it is the now-familiar "MOV A,B",
"CMA", "MOV B,A", "MOV A,C", "CMA", "MOV C,A",
and "INX B". That generates the 16-bit complement, then
"DAD B" to un-do the last DAD, then "RET".

JC DECLP ; loop i f i t f i t

STAX D ; store output ASCI 1

INX D ; po in t to next char pos i t ion

MOV
CMA

A,B ; compute the

; negative

MOV B,A ; of

MOV
CMA

A,C ; the

; sc
MOV C,A ; register

INX B ; pa i r
DAD

RET

B ; un-do las t subtract

; and return

Here's a detailed explanation:

"ASCBIN" is the name of the subroutine. The first step is to
compute how many 10,000's there are in the number and
store that digit. "LXI B, — 10000" and "CALL DECDIG" do
this. See the details on DECDIG, below.

Repeat the above step for 1000, 100, then 10. Upon return
from DECDIG at this time, the final digit, from zero to 9, is
left in HL. Thus, "MOV A,L" gets the digit (in binary), "ORI
'0'" changes the binary to ASCII, "STAX D" stores it. The
"INX D" is not really necessary, but in case the routine calling
it wants to put something more into the buffer, it skips the last
character stored.

COMING UP: Next month, I'll present a continuation of
the subroutines, showing a MOVE routine which will work
fast on either 8080 or Z 80, because it detects which processor
it is running under. I'll also get into Input/Output. Specifical-
ly, CP/M-80 character I/O.

Future installments will get into CP/M-80 disk I/O, both
simple and buffered.The "DECDIG" subroutine divides HL by BC. Normally, this

would be done by subtraction. It could be by a subroutine
similar to DSUB show earlier, but since the number being
subtracted is a constant, it is easier to "add a negative
number" than to subtract a positive number.

Step one is to initialize the quotient. I could just initialize it to
zero, then add one every time a subtract was successful.
However, this would require some extra JMPS, such as:

If you have any questions about how to accomplish a task in
8080 assembler, write to me C/O Lifelines/The Software
Magazine, 1651 Third Ave., New York, N.Y. 10028. Please
restrict your questions to those of a limited enough scope to
be handled in a subroutine. Examples might be: "How do I
convert from EBCDIC (the code used on virtually all IBM
machines except the PC) to ASCII?". I will publish the ques-
tion and an answer in future installments.MVI A,0 ; in i t quotient

DECLP DAD B /’subtract"

JNC N0M0RE

INR A ; count quotient

JNP DECLP

---- A Call For Manuscripts ----<
Maybe you've written for publication before? Or
maybe you've always wanted to write? It could be that
reading Lifelines/The Software Magazine has given
you some ideas on what you have to contribute. We're
interested in hearing what you have learned, and so are
other readers. If you've got experience using software
that runs with CP/M-80, UNIX, CP/M-86, MS-DOS,
XENIX, or UCSD Pascal we'd like to talk to you. We
like to publish both longer essays and those short gems
which can hold so much important information. We
pay competitively and our current authors will tell you
that writing for a magazine like ours is satisfying in
many ways.
Send us a brief resume of your software experience, and
samples of your previous writing, if you have any.
(Don't be shy if you're not an experienced writer.) Then
we can talk about your work and about payment for
your efforts. Write or call: Editorial Dept., Lifelines
Publishing Corp., 1651 Third Ave., New York, N.Y.
10028. Telephone: (212) 722-1700.

N0M0RE: .

It would be much easier to put the INR A at the top of the
loop, but then it would count one too many times. The simple
solution is to initialize it to 0FFH, i.e. one less than zero:

MVI A,0FFH ; i n i t quotient

DECLP IhR A ; count quotient

DAD B ; ’’subtract”

JC DECLP ; loop i f i t subtracted

This would then be followed by an "ADI '0'", to make the
binary value into an ASCII digit. However, it doesn't really
matter where the '0' is added, so why not put it in the ac-
cumulator as part of the initialization. Thus, "MVI A,'0' — 1"
initializes the accumulator to the 'O', but minus one, because
of the INR at the top of the loop. Whew!

Lifelines/The Software Magazine, June 198234

Features

MicroSpell, MicroProof,
And SpellGuard

James K. Mills
or it can simply list the misspelled
words to CRT or printer - then you
search them out with your word pro-
cessor. In the first case, you are
prompted with the dubious word and
given a choice of several responses:
correct the misspelling, ignore the er-
ror, display the context, add the word
to the dictionary, or quit the program.
If you choose to add the word to" the
dictionary, you may also "code" the
word as a verb, noun, adverb, or adjec-
tive. The manual also tells you not to
enter a plural as an entry, but only the
root word. Presumably, MicroProof
will search for plurals of root words.

MicroProof is distributed on a single
eight-inch diskette, containing several
files: MICPROOF.COM (9K) is the
proofreading program; CORRECT1.-
COM (IK) and CORRECT2.COM
(2K) are called automatically by the
"correcting" version of MicroProof
and used for correcting and adding to
the dictionary; ADDTODIC.COM
(6K) is used to add a list of words to the
dictionary; PRINTDIC.COM (3K) is
used to print and edit the dictionary,
and TEST.COM does some magic to
assure you that you have received a
valid disk. The dictionary files are
DICT1.DAT (34K) and DICT2.DAT
(35K) which contain the 50,000 word
dictionary. In addition, there is a
DICT3.DAT (IK) which is used for
storing words added to the dictionary.
Finally, there is a sample text file, EX-
AMPLE (2K). The manual makes refer-
ence to some other files that may be on
certain diskettes, such as M.COM, an
intermediate program to link Micro-
Proof with word processors other than
WordStar. There may also be a patch
program for similar purposes. One
thing that did impress me about Micro-
Proof's manual is that numerous in-
structions are given for customizing
MicroProof to your disk system,
whether it be five-inch or eight-inch, or
TRS80, etc.

Like most such programs, MicroProof
prompts for the input it wants and
guides you through its operation. It is

(continued next page)

Before the widespread availability of
microcomputers the word processing
market was primarily the domain of
minicomputers manufactured by such
companies as IBM, Wang, and others.
Now, although the minicomputers still
hold their place in the market, there are
a great many microcomputers dedi-
cated, many on a part-time basis, to
word processing. For those of us who
are not the best of typists, there are a
variety of word processing systems
available, including a relatively recent
development: proofreading programs
to check your spelling.

The readers will recall the article by
Robert Van Natta reviewing SpellStar
(Lifelines/ The Software Magazine,
April 1982). I would like to compare
SpellStar to MICROPROOF, Micro-
Spell, and SpellGuard. SpellStar has
been reviewed by Mr. Van Natta, so
I will concentrate on the other three
programs.

SpellGuard

guides the user by the hand through its
entire operation. This makes it ideal for
the "non-computerist" user, like the of-
fice secretary. The user is allowed to
have multiple dictionaries for different
purposes, such as correspondence, lab
reports, etc. However, only one dic-
tionary may be used at any one time.
SpellGuard does not allow supplemen-
tal dictionaries in addition to the "regu-
lar" dictionary; this may or may not be
a drawback, depending in your partic-
ular application. SpellGuard also lets
you change its "default table" by using
different files on disk for the default
table; the table specifies the dictionary
to use, among other things.

SpellGuard lets you maintain your dic-
t ionary using MAINTAIN.COM.
SpellGuard's dictionary, as supplied,
contains about 20,000 words. SP.COM
allows you to add words to the diction-
ary as you do your proofreading.
MAINTAIN permits you to copy dic-
tionaries, and merge (or add), and sub-
tract dictionaries from one another.

Overall, I'd say SpellGuard is well-
suited for use by non-computerists, es-
pecially office secretarial personnel.

MicroProof

SpellGuard, by ISA (Innovative Soft-
ware Applications) of Menlo Park,
California, comes with a softback book
of instructions as program documenta-
tion. This book gives the user a step-
by-step introduction to SpellGuard's
use, the help commands, setting up the
normal default entries, etc. Appendices
include usage tips, technical informa-
tion, error messages and a glossary of
terms. The documentation, in my
opinion, is very well done, with many
illustrations to guide the new user.

SpellGuard comes on a single diskette
containing two .COM files: SP.COM
(6K) and MAINTAIN.COM (13K) for
spelling checks and dictionary mainte-
nance, respectively. In addition, there
is a 33K dictionary file, SP.DIC, and a
54K messages file SP.ISA. The only
other file on the disk is LETTER.TXT
(3K), a sample text letter for testing
SpellGuard.

Running SpellGuard is simplicity itself.
The program is self-prompting and

Microproof, by Cornucopia Software
of Walnut Creek, California, will run
only on a system equipped with a Z80
CPU. This may rule out MicroProof
for some users.

MicroProof's documentation comes in
a softbound notebook binder and gives
the usual introduction, including a
brief history of the development of Mi-
croProof by Mr. Phil Manfield; then
the manual gets into actual usage. The
documentation is not quite as effective
as SpellGuard's, but it is by no means
difficult to follow. I had no problem
whatsoever in understanding how to
utilize MicroProof.

MicroProof can be configured to correct
the errors after it proofs your document,

Lifelines/The Software Magazine, Volume III, Number 1 35

not as wordy as SpellGuard, but it does
nicely.

Overall, I'd say that MicroProof seems
to be a well-conceived system, and the
user should have little trouble with it.

MicroSpell

guess. This is actually quite helpful,
and makes using MicroSpell quite en-
tertaining. Watching it make guesses
for your bad words and watching it
find root words that match words with
(sometimes) complex suffixes is quite
interesting. And even though you may
know the correct spelling of a mis-
spelled word, you're saved the trouble
of keying it in.

Opinions And Conclusions

ING, and RARE files are additional
words to be added to the dictionary if
you have enough memory to support
the bigger dictionary segments. The
EXTRA file is a list of words you can
delete from the dictionary if you are
limited by memory size and cannot run
the SPELL program as provided.

MicroSpell does the proofreading in
four passes, one pass for each diction-
ary file. Options upon invoking Micro-
Spell allow you to skip any or all of the
first three passes, suppress creation of
the "exception" (bad word) file, sup-
press context display for bad words,
accept all uppercase words, suppress
creating the output file (dry run), send
words to the exception file, suppress
the suffix guessing routines, suppress
creation of backup file, accept "RUN-
OFF" type mnemonics, mark unfamil-
iar words in the output, and more. Mi-
croSpell also lets you suppress printing
the plurals that MicroSpell accepts, but
it is fun to watch the way MicroSpell's
algorithms work on plurals. And you
will find that occasionally the words
that MicroSpell accepts as plurals and
suffixes are not correct - the English
language not always being logical.

In addition to all of this, there is a learn
mode (very helpful in view of the com-
plexity) to help you become familiar
with MicroSpell. Like most of the pro-
grams reviewed here, MicroSpell also
has an appendix with a table of com-
mands and op t ions (also called
INFO.HLP on disk).

Whew! That's a mouthful, but maybe
it will give you an idea of the flexibility
of MicroSpell as compared to other
programs.

When actually doing the proofreading,
errors are reported to the user, who is
then allowed to correct the error, add
new words to the dictionary, display
the context (automatic unless sup-
pressed by user), quit, and probe the
dictionary for more words (i.e., look
for CR??TE, where the ?? are wild-
cards). But here's MicroSpell's big fea-
ture: MicroSpell "guesses" what it
thinks the misspelled word should be
by looking (automatically or by com-
mand) for similar words in its diction-
ary. Typically, MicroSpell will come up
with one to four guesses for misspelled
words. Each guess is numbered, and all
you have to do is select that number to
replace the word in the file with that

MicroSpell, by Bob Lucas (distributed
by Lifeboat Associates), comes with its
documentation in a three-ring binder;
it is 37 pages in length as opposed to
MicroProof's 30 pages and Spell-
Guard's 116 pages (116 is not a typo).
MicroSpell has more options and vari-
ables than the other two programs,
which makes it both more versatile and
more difficult to learn to use. While the
manual isn't as wordy as SpellGuard's,
it does cover the various aspects of us-
ing MicroSpell concisely, and should be
read, and even re-read from time to
time, so the user can become familiar
with all the options available.

MicroSpell is distributed on two eight-
inch diskettes. The first disk contains
most of the programs and files used
with MicroSpell:

BUILD .COM (13K) used to build LEX files
CUSTOM .COM (13K) customize to your

syst.
EMPTY .COM (2K) create an empty file
INVERT .COM (9K) dumps the LEX files
SPELL .COM (16K) proofing program
UNBUILD .COM (UK) removes words from

LEX files

LEX.l (34K) dictionary file
(letters. A-D)

LEX.2 (32K) dictionary file
(letters E-L)

LEX.3 (33K) dictionary file
(letters M-R)

LEX.4 (32K) dictionary file
(letters S-Z)

In addition to the above, there are some
help files, and a demo file. On the sec-
ond distribution diskette are the fol-
lowing vocabulary files:

ED .VOC (29K)
EXTRA.VOC (35K)
ING .VOC (20K)
RARE .VOC (41K)

By using BUILD and UNBUILD, the
user can add to or delete from the dic-
tionary the lists of words contained in
the four vocabulary files. The ED,

Well, it will probably come as no sur-
prise to the reader that I, personally,
like MicroSpell better than the others.
It is like comparing a text editor to a
word processor - there are similarities,
but you can do so much more with the
more complex program that gives you
more options. (I once swore foolishly
that I'd never use WordStar, I was
happy with my copy of WordMaster,
but now I write these articles with
WordStar!) The only item left open and
uncovered is speed of execution. No
one likes to wait all day for a program
to finish. The table provided should
give you all the data you need. Note
that MicroProof is not specified - I am
currently using an 8080 CPU, not the
Z80 required for MicroProof. How-
ever, I am in the process of upgrading,
and I plan to publish a followup article
next month to indicate how all these
programs do on a 4 MHz Z80. The sys-
tem used for these comparisons (this
month) is an 8080 running at 2 MHz
with 64k of memory, and a Tarbell
single density floppy disk controller.
The file checked was this article (prior
to any corrections).

Final Conclusions

The reader will have the best idea of
what is best for his or her purposes.
SpellGuard is well-suited for an office
environment where speed is the pri-
mary factor, although you may en-
counter objections from personnel who
have to "bypass" all the false errors
(this is true of all the proofreading pro-
grams). One of the things that Mr. Van
Natta pointed out in a previous article
is that the secretaries don't want to
spend the time and effort to run the
spelling check program and do the nec-
essary subsequent editing, whether
part of the proofing program or a sepa-
rate editor. It does take time and effort.

36 Lifelines/The Software Magazine, June 1982

take the time and make the effort to use
a proofreading program, whichever
variety is best for your needs.

lication, or for any purpose for which
you want the neatest and most profes-
sional appearance, you will want to

If you are more concerned with amount
of output as opposed to quality of out-
put, so be it. If you are writing for pub-

CRITERIA SPELLSTAR MICROSPELL SPELLGUARD MICROPROOF

time to proof: 3:30 n/a 00:45 next month
time to correct: 11:30 n/a 10:00 next month
total time: 15:00 8:30 10:45 next month
words in diet.: 21026 7 20000 50000
words in file: 1704 1704 1704 1704
different words: 587 587 587 587
words misspelled: 79 53 86 next month
total misspelled: 168 98 7 next month
actual misspelled: 12 12 10 next month
false errors: 156 86 81 next month

Memory required: 7 48K minimum 32K minimum next month
Processor required: any * any * any * Z80 only

* "any" means 8080, 8085, or Z80.
? MicroSpell does not tell you how big its dictionary is.

SpellGuard does not inform you of the total number of mismatched words, only the number of unique mis-
matched words.

SpellStar must run under WordStar, which will not run on a 32K system. I'm not sure of the minimum memory
required.

Patches For MAGSAM
Micro Applications Group has released two patches to correct bugs in its products. The first problem occurs in all versions ofMAGSAM/E and PRISM/ADS. When MAGSAM is run unbuffered it may during a key search look at the buffer contents asoverflow, when in fact the buffer contains index data. As result, a pointer may point to itself, causing a loop from whichMAGSAM never returns. This only occurs during key searches (RK, SK, RG, SG, WA, SA, KD, SD, DR).
If the loop has occurred and the program has been aborted, the index structure may be corrupted. It should be rebuilt by sequen-tially reading the data file and with each record executing a WA into new index and overflow files.
To cure this problem, make the following changes to MAGSAM. BAS. Then recompile all programs using MAGSAM.BAS.(New code is underscored.)
61220 MAGSAM%(0)=VAL(MID$(MAGSAM$(12),MAGSAM%(14)+MAGSAM%(4),6))

MAGSAM%(7)=MAGSAM%(7)+1:RETURN
61230 IF MAGSAM$(6)O"B" THEN GOTO 61237

IF MAGSAM.BIO$="O" AND MAGSAM.BUF%=MAGSAM%(0) THEN \
GOTO 61239

MAGSAM.BUF%=MAGSAM%(0):MAGSAM.BI0$="0"
61237 READ#MAGSAM%(3),MAGSAM%(0);MAGSAM$(12)
61239 RETURN

The second bug occurs in all versions of MAGSAM/E, in versions 4.2 and higher of MAGSAM III, and in versions 1.1 andhigher of MAGSAM IV. During a reorganize involving duplicate keys, MAGSAMRO may fail to write the last overflow rec-ord . This may result in a CBASIC error EF (End of File) on subsequent access of the index structure, and the overflow file may bemissing the last record after the first reorganize. The index structure, which may be corrupted, should be rebuilt in the fashiondescribed above.

Apply the changes below to MAGSAMRO.BAS amd recompile the programs which use it, including MAGSAMRX. New codeis underlined.
64700 IF LEN (MAGSAM$(16))>1 THEN GOSUB 64800:MAGSAM%(16)=MAGSAM%(16)+1

MAGSAM%(11)=MAGSAM%(16)-1
IF LEN(MAGSAM$(11))>1 AND LEFT$(MAGSAM$(11),l)="0" THEN GOSUB 65400
IF MAGSAM%(18)00 THEN GOSUB 64750

Lifelines/The Software Magazine, Volume III, Number 1
37

Features

A Detailed Description Of
PLAN80, Part 2

Raymond J. Sonoff
operated on by the user. These
STATEMENTS prove easy to
implement.

3-The strict adherence to syntax,
and the 36 error codes provided
greatly aid in Procedure file
program debugging.

4- Files can be readily called from
or stored on user-specified
disks, or output can be to a
printer or the console.

5-The INTERACTIVE STATE-
MENT provides the user with
the capability to perform mul-
tiple computations for various
data entries or combinations of
data values. A simple recalcu-
late command is all that is re-
quired after miking these
changes while in the Data Dis-
play Mode of PLAN80.

Where PLAN80 could be improved, at
least from the user's present experience
with this software package, is as
follows:

1- A built-in "mini-editor" would
save considerable time exiting
from PLAN80, calling up an
editor and the procedure file to
be edited, making the changes
thought appropriate, storing
the edited file, calling up
PLAN80, and inputting the
edited procedure file for execu-
tion to see if no further syntax
errors have been made, etc.

2- Many more examples and
greater elaboration of how the
various STATEMENTS can be
utilized effectively and effi-
ciently in Procedure files
would be helpful.

3-The establishment of a PLAN80
USERS GROUP with a periodic
mailing program would be a
great idea. Numerous PLAN80
software users could contribute
to its contents.

COLUMNS. There must be at least
one COLUMN.

ROWS. ROW specifications define
the structure and certain printing char-
acteristics associated with a report's
ROWS.

DATA. DATA may be entered into
any row or column, and the range of
rows applying to entry by column (or
the range of columns applying to entry
by row) is under user control. Values
can be placed into any part of a
PLAN80 application.

INTERACTIVE. The INTERACTIVE
statement indicates where PLAN80
should begin to recalculate after values
are changed in the DISPLAY mode.

RULES. The RULES statements indi-
cate calculations.

OPTIONS. The OPTIONS section
lets you specify characteristics of a
printed report.

DISPLAY. The DISPLAY statement
allows you to view results on your
computer screen or to print the report.

Some of the more positive features of
PLAN80 that have been noted to date
are these:

1- PLAN80 is forgiving. It auto-
initializes data fields to zero
upon startup; it "fits" files com-
patibly when GET statements
are used; when run-time errors
in the RULES section of the
Procedure file are skipped via
the < C > "continue" key, the
associated data values will be
set to zero.

2- PLAN80's FOR, GET, PUT,
INCLUDE, PRINT, . . .STATE-
MENTS allow for direct selec-
tion, limiting, combining, or
other appropr ia te RULES,
DATA, and DISPLAY sections
of a given Procedure file being

PLAN80 was initially discussed by the
author in the May 1982 issue of Life-
lines/ The Software Magazine. This
second installment review article dis-
cusses how PLAN80 might be used.

Certainly, most PLAN80 applications
relate to financial modeling. After all,
depreciation and internal rate of return
functions are built into PLAN80 s li-
brary of functions. An example of a
Procedure file that illustrates several
types of depreciation over varying
periods of time, and its associated
printout, are shown in Tables I and II.

By virtually eliminating the drudgery
previously associated with calculating,
recalculating, checking and ultimately
producing high quality reports, you
should find that PLAN80 will enable
you to save time, perform much needed
sensitivity analyses, and provide (via
simple PRINT commands) one or more
finished reports incorporating those
parameters you have selected as appro-
priate for your particular multivariate
models, sets of equations, etc.

In short, not only will such computing
power provide you with the capability
to solve problems readily and accu-
rately while certainly enhancing your
own understanding, but any of the
mass storage files associated with your
efforts can, if so desired, be retrieved,
reformatted, or subjected to further
"What if...?" considerations.

Features Of PLAN80

PLAN80 statements are divided into
sections (TITLES, COLUMNS, ROWS,
DATA, AND RULES). Each statement
is described below.

TITLES. The TITLES section intro-
duces up to nine lines at the top of the
report. Each line may be up to 60 char-
acters wide and be centered, left-justi-
fied, or right-justified.

Lifelines/The Software Magazine, June 1982
38

Ill

Table I
TITLES

1 "PLAN80 EXAMPLE #1"
2 "Multi-Year Depreciation Options Modeling"
3 "(Cost and Depreciation, in Thousands of Dollars)"

:COLUMNS
Y1982 "1982"
Y1983 "1983"
Y1984 "1984"
Y1985 "1985"
Y1986 "1986"
Y1987 "1987"
Y1988 "1988"
Y1989 "1989"
Y1990 "1990"
Y1991 "1991"

:ROWS
MACHINE1 "Machine #1 (5-yrs.)"
MACHINE2 "Machine #2 (7-yrs.)"
MACHINE3 "Machine #3 (7-yrs.)"
MACHINE4 "Machine #4 (6-yrs.)"
MACHINES "Machine #5 (10-yrs.)"
SL1 "Straight Line #1"
SOD2 "Sum-of-Digits #2"
DB3 "Decling Bal. #3"
DB4 "Dbl.Decl. Bal.#4"
SOD5 "Sum-of-Digits #5"

:DATA
MACHINE1 = 100
MACHINE2 = 200
MACHINE3 = * 200
MACHINE4 = * * 400
MACHINES = * * * 800

INTERACTIVE
:RULES

SL1 @SL(MACHINEl,5,0.5)
SOD2 @SOD(MACHINE2,7)
DB3 @DB(MACHINE3, 7,1.25,1)
DB4 @DB(MACHINE4,6,2.0,l)
SOD5 @SOD(MACHINE5,10)

:OPTIONS
ROWWID(20)

:DISPLAY

4- A printable DUMP of encoun-
tered error codes with their
locations to aid in debugging
of Procedure files could be
offered.

Final Comments

PLAN80 has proven more than a little
difficult for me to get used to. Essen-
tially, you set up each procedure file as
indicated in the FEATURES section of
this article. However, the fact that you
compose your file using algebraic rela-
tionships under the RULES portion of
the overall file, introduce DATA values
in ROW and COLUMN positions, and
ultimately run a program to DISPLAY
the results of your file creation activity
does differ considerably from normal
word processor-oriented operations
(including to some extent T/MAKER II
which I reviewed for Lifelines/ The
Software Magazine also). Now, after
having spent the time actually doing a
number of these operations, I am be-
ginning to appreciate and to feel com-
fortable with PLAN80.

So, if your experience is anything like
mine, be prepared to spend time getting
used to the PLAN80 'system". It is
worth it!

1982 1983 1984 1985 1986 1987 1988 1989 1990 1991

Machine #1 (5-yrs.) 100 - - -
Machine #2 (7-yrs.) 200 - - - -
Machine #3 (7-yrs.) - 200 - - -
Machine #4 (6-yrs.) - - 400 -
Machine #5 (10-yrs.) - - - 800 -
Straight Line #1 10 30 50 70 90 100 100 100 100 100Sum-of-Digits #2 50 93 129 157 179 193 200 200 200 200Decling Bal. #3 - 36 65 89 109 125 139 150 159 166Dbl. Deel. Bal. #4 - - 133 222 281 321 347 365 377 384Sum-of-Digits #5 - - - 145 276 393 495 582 655 713

Lifelines/The Software Magazine, Volume III, Number 1 39

Pseudo-Relocatable Subroutines, Fart 2
Gregory A. Knott

The LoaderLast month I presented a method of cre-
ating pseudo-relocatable' assembler
language code using Digital Research's
ASM. If you recall, this feat was ac-
complished using a 'relocator' con-
stant. What this constant actually did
was cause ASM to generate reference
addresses to variables and labels not
according to Hoyle (or Kildall if you
prefer). The addresses generated were
actually displaced to another location
in memory. This allowed a program to
be created that could be relocated to a
pre-determined location other than the
Transient Program Area (TPA). This
relocatability was also accomplished
using the distributed ASM and LOAD
utilities, thus negating the need for pur-
chasing a relocatable assembler.

This technique is most suitable to sub-
routines that will be called from some
main program, like MBASIC. These
subroutines typically have to be loaded
in memory prior to MBASIC being ini-
tiated. In Part 1, 1 demonstrated how to
load this subroutine into memory using
DDT. Now, DDT is kind of fun to play
around with, but I don't get my jollies
jumping in and out of DDT just to load
a subroutine that one of my productive
programs needs. I knew there must be a
better way!

The Dream

constant. Since this part of the program
is no longer relative to the TPA ad-
dress, it was necessary to fake out ASM
and have it generate an address for this
label that we knew it could find. If you
can understand why the T Z was added
you'll have no trouble with this relocat-
ability nonsense.

After our subroutine is loaded, we then
CALL GETPROG + Z again, but this
time we are looking for the main pro-
gram MBASIC. Note that the subrou-
tine was loaded in high memory but
MBASIC was sent to the TPA. Also
note that it is not only necessary to re-
fer to labels of statements with the relo-
cator constant but also for labels of
variables such as SUBFCB. However,
we don't add the relocator constant to
the absolute addresses that aren't relo-
cated like TPA and SUBADDR.

Once MBASIC is loaded we set up the
command tail line which it reads from
CP/M-80's default buffer area. In this
case the parameter information we
want to pass is to execute the program
PRINTEST.BAS and not allow any
memory usage above B100H (where
our subroutine is now residing).

After this is accomplished we simply
transfer control to location 100H, the
TPA (where MBASIC is now).

If there is some problem with opening a
file it is assumed to be absent from the
disk and an error message is printed.

In actual use the program is executed
like this:

A > LOADSUB

It will also require the following files to
be on drive A:

MBASIC.COM
PRINTHI.COM
PRINTEST.BAS

Some Caveats

The program presented here will do
just that. It is written in such a manner
that it uses the relocator constant and
thus will allow a better understanding
of how it is employed. The program is
attached in Figure 1. Let's look at it.

The very first two program statements
are EQUates that define two absolute
memory addresses. The first, SUB-
ADDR, is the location where the sub-
routine will be loaded. This must
match the 'Pseudo-Org' location of the
compiled subroutine. The subroutine
should be placed in the highest possible
memory location so that MBASIC can
use as much memory as possible. It
should, however, be placed below the
FDOS. To figure out the highest loca-
tion you can use, look at locations
0006H and 0007H. CP/M-80 uses this
address to tell programs where not to
go. You best not go there either. (If
you're using DDT to read that location
you will find that DDT will adjust that
location downward as DDT actually
sits just below the FDOS).

The second, LOADADDR, is the loca-
tion where a piece of this program will
be moved. It is necessary to move this
portion of the program out of the way
because later MBASIC comes flying
right into this area of memory and
would overlay the actual loader rou-
tines and cause all kinds of havoc.
Make sure this address is beneath SUB-
ADDR by at least 200 bytes or the sub-
routine will overlay the moved portion
of the program.

The first part of the program, after get-
ting control from CP/M-80, moves the
loader portion to the location LOAD-
ADDR. Once the major part of the pro-
gram has been relocated up into high
memory, control is transferred to this
portion.

At this point, the stack is set up and the
subroutine is loaded into memory by
the statement CALL GETPROG+Z.
Note here the use of the relocator

I thought it would be great to run one
program that would place my subrou-
tine into memory at the proper location
and properly transfer control to
MBASIC. It would be even better if
MBASIC could start right off on its
productive program. This would mean
that to start any application, the user
would simply have to enter one com-
mand - and it's off to the races. The
user wouldn't have to know anything
about DDT or even MBASIC or be
concerned in the slightest that there
was a slick little subroutine floating
around in memory somewhere. What I
would have would be "user friendly"
(my definition: someone who has used
your software extensively for one year
and still calls you a friend)!

When writing pseudo-relocatable sub-
routines you must be very careful to

40 Lifelines/The Software Magazine, June 1982

remember to use the relocation constant properly. If you
don't, your program can either jump to an unexpected area in 0109 12
memory or pick up an undesired value from the wrong loca- 010A 23
tion. This can lead to some very strange events and has ac- 010C 0D
tually caused some of my disks to become unreadable. C300I0

The subroutine must be placed in an area above MBASIC but
can't encroach into the CP/M-80 FDOS.

..OF LOADER ROUTINE
MOVELOOP MOV A,M /PICK UP BYTE OF ROUTINE

STAX D /PLACE BYTE IN HI MEMORY
INX H /NEXT BYTE TO MOVE
INX D /NEXT LOCATION TO PLACE
DCR C /ALL BYTES BEEN MOVED??
JNZ MOVELOOP /NO..MOVE SOME MORE
JMP LOADADDR /YES..JUMP TO LOCATION..

..LOAD ROUTINE NOW AT

This is the actual loader routine that gets
relocated to high memory (LOADADDR).

LOADPROG EQU $ /BEGIN POINT OF LOADER
Z EQU LOADADDR-$ /RELOCATIBILITY CONSTANT

LOAD LXI SP,LOADADDR /SET UP STACK BELOW THIS

LXI D,SUBFCB+Z /FCB OF SUBROUTINE
LXI B,SUBADDR / WHERE IT GOES
CALL GETPROG+Z / PLACE IN MEMORY

LXI D,MAINFCB+Z /FCB OF MAIN PROGRAM
LXI B,TPA / WHERE IT GOES
CALL GETPROG+Z / PLACE IN MEMORY

LXI D,BUFFER /COMMAND LINE TAIL AREA
LXI H,PARAM+Z /TAIL (PARMS FOR MBASIC)
MVI C,LENPARM+1 /LENGTH OF TAIL

LOOP MOV A,M /PICK UP BYTE
STAX D /PLACE BYTE
INX H /NEXT TO GET
INX D /NEXT TO PUT
DCR C /ALL MOVED??
JNZ LOOP+Z /NO..MOVE SOME MORE
JMP TPA /YES..START MAIN PROGRAM

This routine loads a program into memory.
[D,E] — > FCB OF PROGRAM TO LOAD
[B,C] — > LOCATION TO LOAD

0113 =
9EED =

0113 3100A0

Don't forget to load MBASIC or your other programs so they
will not use the area where your subroutine sits. This means
using the /M: parm in the MBASIC command.

0116 1198A0
0119 0100B1
011C CD28A0

011F 11BCA0
0122 010001
0125 CD28A0

0128 118000
012B 21E0A0
012E 0E14
0130 7E
0131 12
0132 23
0133 13
0134 0D
0135 C21DA0
0138 C30001

To use the loader program with different subroutines make
sure to change the SUBADDR address, the SUBFCB subrou-
tine file name, and the MBASIC PARAM parameter string
with the p rog ram being execu ted and the /M:
address.

If you have several subroutines that you would like to load,
this program could be expanded quite easily. Or if you don't
want to go to MBASIC right away it could also be con-
tracted. Some hotshot hacker out there could probably find
other nifty ways to improve upon this small program. Like
specifying at run time much of the information that is hard
coded within.

Happy Pseudo-Relocating!!!
013B D5
013C C5
013D 0E0F
013F CD0500
0142 3C
0143 CA53A0
0146 DI
0147 218000
014A 19
014B E5
014C 0E1A
014E CD0500
0151 Cl
0152 DI
0153 D5
0154 C5
0155 0E14
0157 CD0500
015A B7
015B CA33A0
015E Cl
015F DI
0160 0E10
0162 CD0500
0165 C9

/SAVE FCB ADDRESS
/SAVE LOCATION

/OPEN FILE
/OPEN SUCCESSFUL??
;..NO
;WHERE PROGRAM IS GOING
;[H,L] = 128
;WHERE NEXT SECTOR GOES
/SAVE NEXT MEMORY LOC

/SET AREA TO READ TO
/NEXT MEMORY LOC
/FCB ADDRESS
/PUT BACK
;..AGAIN

/GET 128 BYTES OF PROG
/END OF FILE??
;..NO GET ANOTHER SECTOR
;DISCARD MEMORY LOC
/FCB ADDRESS

;CLOSE FILE

GETPROG

§3
8

S
8

8
8

8

8g
g8

58

8
r1

f,
nc

>x

t~•
sc

t-1

sc
sc

Figure 1 C,OPEN
BDOS
A
OPENERR+Z
D
H,LENSECT
D
H
C,SETDMA
BDOS
B
D
D
B
C,READ
BDOS
A
GETLOOP+Z
B
D
C,CLOSE
BDOS

Subroutine LoaderLOADSUB GETLOOP

Copyright (C) 1981 — Knott & Associates

Written — 06 NOV 81 — Gregory A. Knott

This program will load two programs into
storage. It was designed to load a
subroutine into high memory, and then
load MBASIC into the TPA.

The following two addresses should be
changed based upon where the subroutine
should be loaded, and where the loader
portion of this program should be placed
within memory.

B100 =
A000 =

SUBADDR
LOADADDR

EQU
EQU

0B100H
0A000H

/WHERE SUBROUTINE SITS
/WHERE LOADER SITS

0000 = BOOT EQU 0000H /CP/M-80 WARM BOOT
0005 = BDOS EQU 0005H /CP/M-80 SYSTEM FUNCTIONS
0009 = PRINT EQU 0009H /CP/M-80 PRINT STRING
000F = OPEN EQU 000FH /CP/M-80 OPEN FILE
0010 = CLOSE EQU 0010H /CP/M-80 CLOSE FILE
0014 = READ EQU 0014H /CP/M-80 READ SEQUENTIAL
001A = SETDMA EQU 001AH ;CP/M-80 SET DMA

0080 = BUFFER EQU 0080H /PARM BUFFER
0080 = LENSECT EQU 0080H /SECTOR LENGTH (128)
000D = CR EQU 0DH /CARRIAGE RETURN
000A = LF EQU 0AH /LINE FEED
0100 = TPA EQU 0100H /TRANSIENT PROGRAM AREA

This routine is entered if open failed.

0166 Cl
0167 DI
0168 13
0169 2170A0
016C 0E0B
016E LA
016F 77
0170 23
0171 13
0172 0D
0173 C25BA0
0176 116EA0
0179 0E09
017B CD0500
017E C30000

OPENERR POP B ;DISCARD MEMORY LOC
POP D /FCB ADDRESS
INX D ;[D,E] — > NAME OF FILE
LXI H,OVERLAY+Z ;MESSAGE OVERLAY POINT
MVI C,ll /LENGTH OF FILE NAME

OPENLOOP LDAX D /GET FILE NAME BYTE
MOV M,A /PLACE IN MESSAGE
INX H /NEXT SPOT TO PUT
INX D /NEXT SPOT TO GET
DCR C /DONE??
JNZ OPENLOOP+Z /..NO, GET SOME MORE
LXI D,ERRMSG+Z /[D,E] — > ERROR MSG
MVI C,PRINT
CALL BDOS /PRINT ERROR MSG
JMP BOOT /RELOAD CP/M-80This

code
The reason this
MBASIC gets loaded
program.

portion of
routine up

the program moves the loader
into higher memory,
is necessary

it won't
is so when
overlay this

Working Storage Area

Three areas might have to be changed here:
SUBFCB — This is the name of the

subroutine
MAINFCB — This is the name of the main

routine
PARAM — This is the command line tail

to be passed to the main
program. In the case of MBASIC

0100 LOADSUB ORG TPA /BASE OF PROGRAM
0100 1100A0 LXI D,LOADADDR /[D,E] — > WHERE..

/..LOADER PORTION GOES
0103 211301 LXI H,LOADPROG /[H,L] — > WHERE..

/..LOADER IS NOW
0106 0EF4 MVI C,LENLOAD /COUNTER FOR LENGTH..

(continued next page)
Lifelines/The Software Magazine, Volume III, Number 1 41

it is necessary to put in the
program you want executed when
MBASIC takes control (if
desired) and the highest
location that MBASIC can use.

CR,LF
'PROGRAMNAME'
' NOT FOUND — LOAD ABORTED',CR,LF,'$'

01AB 005052494ESUBFCB
01C1 0000000000
01CF 004D424153MAINFCB
01E5 0000000000
01F3 1320505249PARAM
0013 = LENPARM
00F4 = LENLQAD
0207

0,'PRINTHI COM',0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,'MBASIC COM',0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0
LENPARM,' PRINTEST /M:&HB100'
$-PARAM-l
$-LQAD
LOADSUBu

 a

c

0181 0D0A ERRMSG DB
0183 50524F4752OVERLAY DB
018E 204E4F5420 DB

For BSTAM/BSTMS Users
FILE NAME UART CHIP APPLICATION

UEAGLE.ASM
UHP125.ASM

SIO/DART AVL EAGLE computer.
Hewlett-Packard HP-125
computer.

UHOR.ASM 8251 North Star Horizon and
IMSAI 2SIO.

UISB.ASM 8251 Old Superbrain
computer.

UISB2.ASM 8251 Superbrain computer.
UOSBORNE.ASM 6850 Osborne computer.
UQUAY.ASM Z80 SIO QUAY 500 series

computer. *
UROBIN.ASM

USOL.ASM

8251 DEC VT-100 with VT-
18X upgrade.
SOL computer.

UTRS2.ASM Z80 SIO TRS-80 Model II
computer.

UTUART.ASM 5501 Cromemco TUART
board.

The following is a list of interfaces included with
BSTAM/BSTMS. They may be used as a starting point for
writing your own interface or customizing the routines to
take advantage of specific hardware. Three interfaces are
new - UHP125, UOSBORNE, and UROBIN

FILE NAME UART CHIP APPLICATION
U10X.ASM Ohio Scientific with 10X

I/O board.
TRS-80 Model I
computer.
Dynabyte computer.
IMS 5000 computer
Bare bones example.
Heath computer.
Original exemplary
interface.
Datapoint 1550
computer.
Hayes MICROMODEM
100.
Durango computer.

U1602/43.ASM 1602

U5501.ASM 5501
U64021.ASM 64021
U6850.ASM 6850
U8250/43.ASM 8250
U8251.ASM 8251

UDATAPT.ASM

UDCHAYES.ASM

UDURANGO.ASM
*UQUAY is readily patched with the proper port addresses for the Xerox
820 and Televideo computers, among others, using Z80 SIO.

Attention Dealers!
There are a lot of reasons why you should be carrying Lifelines/The Software

Magazine in your store. To provide the fullest possible service to your customers, you
must make this unique publication available. It will keep them up to date on the

changing world of software: on updates, new products, and techniques that will help
them use the packages you sell. Lifelines can back up the guidance you give your

customers, with solid facts on the capabilities of different products and their suitability
to a variety of situations. Now we can also offer you an index of all back issues of

Lifelines, opening up a full library of information for you and your customers.

For information on our dealer package, call (212) 722-1700, or write to Lifelines
Dealer Dept., 1651 Third Ave., New York, N.Y. 10028.

42 Lifelines/The Software Magazine, June 1982

The largest selection of software from the world’s largest software publisher.
LIFEBOAT’S PRODUCT LIST NO. 22Va

NEIV — 16-Bit Software Available fortheIBMPC.plus. . .
System Tools:
Emulator/86 (the CP/M emulator)
EM80/86
PMATE-86
UT86

Telecommunications:
ASCOM

Languages:
Lattice C Compiler

DataBase Management
Systems:
T.I.M. Ill

Disk Operating
Systems:
MS-DOS — soon available config-
ured for CompuPro Sweet 17 and
Software Development System. Cur-
rently available for OEM license.

Media & Formats
IBM Personal Computer .
GodBout.........................
Seattle
TecMar

8-Bit Software Available
System Tools:
BUGanduBUG
DESPOOL
DISILOG
DISTEL
EDIT
EDIT-80
FILETRAN
IBM/CPM
MAC
MACRO-80
MINCE
PANEL
PASM
PLINK
PLINK II
PMATE
RAID
Reclaim
SID
TRS-80 Model II Cost. Disk
Unlock
WordMaster
XASM: 05, 09, 18, 48, 51, 65, 68, F8,

400
ZAP80
ZDT
Z80 Development Package
ZSID

Telecommunications:
ASCOM
BSTAM
BSTMS
MicroLink-80
RBTE-80

Languages:
ALGOL-60
APL/V80
BASIC Compiler
BASIC-80
baZic II

Media & Formats

Word Processing
Systems and Aids:
Benchmark
DocuMate/Plus
MicroSpell
Letteright
Magic Wand
Spellguard
TEX
Textwriter III
Wordindex
WordStar
WordStar Customization Notes
Data Management
Systems:
CONDOR
Formula
HDBS
Hoe
Microseed
MDBS
MDBS:DRS,.QRS,.RTL
dBASE II
PRISM/LMS
PRISM/IMS
PRISM/ADS
T.I.M. Ill

General Purpose
Applications:
CBS
CBS Label Option
Selector III-C2
Selector IV
Mailing List Systems:
Benchmark Mailing List
Postmaster
Mailing Address
MailMerge for WordStar
NAD

Financial Accounting
Packages:
BOSS Financial Accounting System

Books, Periodicals,
Accessories
APL—An Interactive Approach
Accounts Payable and Accounts

Receivable-CBASIC
The CP/M Handbook (with MP/M)
The C Programming Language
8080/Z80 Assembly Language

Techniques For Improved
Programming

Executive Computing
Fifty BASIC Exercises
General Ledger-CBASIC
H.W.Sams Crash Course in

Microcomputing
Introduction to Pascal
Lifelines
Pascal User Manual and Report
The Pascal Handbook
The Pascal Primer
Payroll with Cost Accounting

-CBASIC
Structured Microprocessor

Programming
Using CP/M— A Self-Teaching

Guide
Smartmodem
DC Data Cartridges
Flippy Disk Kit
Floppy Saver
Diskette Drive Head Cleaning Kits
Vari Clean Cleaning Kit

Precision BASIC
BD Software C Compiler
CBASIC-2
CIS COBOL (Standard)
CIS COBOL (Compact)
COBOL-80
FORTRAN-80
KBASIC
muLISP/muSTAR-80
Nevada COBOL
JRT Pascal
Pascal/M
Pascal/MT
Pascal/M +
Pascal/Z
PL/l-80
STIFF UPPER LISP
S-BASIC
Timin’s Forth
Tiny-C
Tiny-C Two
UCSD Pascal
Whitesmiths’ C Compiler
XYBASIC

Language and Appli-
cations fools:

Peachtree Financial Packages
Univair 9000 Series

General Ledger Accounting
Structured Systems Group Financial

Packages
GLector

Numerical Problem-
Solving Tools:
T/MAKER II
fpl
PLAN80
Analyst
Microstat
muSIMP/muMATH
Statpak

Professional And Office
Aids:
Angel
American Software Property

Management Package
Cornwall Apartment Management
Datebook
GrafTalk
Guardian
Professional Time Accounting
Property Management
PAS 3 Medical
PAS 3 DENTAL
Sales Pro
Torricelli Author
Univair 9000 Series Family Medical

Management
Univair 9000 Series Family Dental

Management
Univair 9000 Series Insurance

Agency Management
Univair 8000 Medical Management
Univair 8000 Dental Management
Wiremaster
Univair 9000 Series

Legal Time Accounting

BASIC Utility Disk
DataStar
FABS
FABS II
Forms 1 for CIS COBOL
Forms 2 for CIS COBOL
MAGSAM III
MAGSAM IV
MAGSORT
M/SORT for COBOL 80
Programmer’s Apprentice
PSORT
QSORT
STRING/80
STRING BIT
SUPERSORT
ULTRASORT II
VISAM

Disk Operating Systems
Software Bus Family
SB-80
CP/M-80
MP/M

Hard Disk Integration
Modules

IMSAI VDP-44................................. R5
IMSAI VDP-80.......................... A1
Industrial Microsystems 5000 RA
Industrial Microsystems 8000........ A1
Intel MDSSD A1
Intertec Superbrain DOS 0.5-2.X....R J
Intertec Superbrain DOS3.XRK
Intertec Superbrain QD.................. RS
ISC Intercolor 8063/8360/8963..... A1
LexitronVT1303DS/DD................ S8
Lexor Alphasprint Model S1S1
Meca Delta-1 5.25in....................... P6
MICOM2001.................................. B3
MICOM 2001E................................ B4
MICOM3003................................. M1
Micromation................................... A1
MicroMega85................................ SC
Micropolis Mod 1Q1
Micropolis Mod IIQ2
MITS 3200-3202B1
Monroe OC 8820, DD/SSSW
Morrow Discus................................ A1
Mostek.. A1
MSD5.25in.................................... RC
MULTI-TECH-I............................... Q2
MULTI-TECH-II.............................. Q2
Nascom (Gemini drives)................. R3
Nascom II with Lucas Drives..........SL
NCR 8140/9010.............................A1
NEC PC-8001................................. RV
Nicolet Logic Analyzer Model 764 .SX
NNC-80/80W.................................. A1
North Star SD.................................. P1

North StarDD................................. P2
North StarQD................................. P3
Northern Telecom 503.................. SM
Nylac Micropolis Mod II................. Q2
Ohio Scientific C3...........................A3
OKI IF-800 + MSA CP/M-80 SP
OKI IF-800 + OKI/Lifeboat

CP/M-80..................................... SR
(Above OKI entries replace catalog
entry for OKI IF-800 format code RZ)
Pertec PCC 2000A1
PET/CBM w/Small Systems

Engineering Box + 8050...........C2
PET/CBM w/Madison Z-RAM +

8050 ...C4
Philips MICOM 2001 8 in................ B3
Philips MICOM 2001E.................... B4
Philips MICOM 3003 M1
Processor Technology Helios II..... B2
Quay 500.......................................RO
Quay 520RP
RAIRDD...RE
Research Machines 5.25 in........... RH
Research Machines 8 in................. A1
Sanco 7000 5.25 in........................RQ
Sanyo MBC 1000...........................SY
Sanyo MBC 2000...........................SS
Sanyo MBC 3000...........................A1
SD Systems 5.25 inR3
SD Systems 8 in..............................A1
Spacebyte...................................... A1
Tarbell 8 in....................................... A1
TEI 5.25in.......................................R3

This list of available formats is subject
to change without notice. If you do not
see your computer listed or are uncer-
tain, call to confirm the format code
for any particular equipment.

ADDS MultivisionRT
ALSPA8in...................................... A1
Altair 8800B1
Altos.. A1
Apple CP/M 13 Sector................... RG
Apple CP/M 16 Sector................... RR
Archives 1SG
AVL Eagle II ST
BASF System 7100RD
Blackhawk Micropolis Mod II Q2
BMC IF-800.................................... SR
California Computer Sys 8 in.......... A1
CDS Versatile 3BQ1
CDS Versatile 4............................... Q2
Columbia Data Products 8 in.......... A1
Columbia Data Products 5.25 in. ...S4
Commodore CBM/PET w/SSE

Box + 8050................................ C2
Commodore CBM/PET
w/MadisonZ-RAM + 8050C4
COMPAL-80.................................. Q2
Computer Ops N.C. HQ................. S2
Control Data 110A1
CPT8000A1
Cromemco System 3...................... A1
Cromemco System 2 SD/SS..........R6

Cromemco System 2 DD/SS.........RX
Cromemco System 2 DD/DS.........RY
CSSN Backup................................. T1
Datapoint 1550/2150..................... A1
DECVT18X................................... SD
Delta Systems................................. A1
Digi-Log Microterm II..................... RD
Direct OA1000............................... M2
DTC Micro 210A............................. SC
Durango F-85................................. RL
Dynabyte DB8/2............................. R1
Dynabyte DB8/4............................. A1
Exidy Sorcerer +

Lifeboat CP/M -80.......................Q2
Exidy Sorcerer +

Exidy CP/M-80 5.25 in............... RW
Exidy Sorcerer +

Exidy CP/M-80 8 in...................... A1
EXO... A1
Findex... P6
Heath H8 + H47............................. A1
Heath H89 + Magnolia CP/M-80 ,.P7
Heath H89 + Heath CP/M-80........ P7
Helios II.. B2
Heurikon MLZ, SSSN
Heurikon MLZ, DS.........................SO
Hewlett-Packard 125, 5.25in.........SB
Hewlett-Packard 125, 8 in.............. A1
IBEX7100......................................RO
ICOM 2411 Micro Floppy............... R3
ICOM3712.....................................A1
ICOM 3812.....................................A1
IMSAI VDP-40/VDP-42................... R4

TEI 8 in... A1
Televideo DD/DSS5
T.I.P. (Alloy Engineering, Inc.)........ T3
Toshiba T200.................................. SF
Triumph Adler AlphatronicSV
TRS-80 Model 1 +

Shuffleboard 8 in......................... A1
TRS-80 Model II.............................. A1
Vector MZQ2
Vector System 2800....................... A1
Vector System B/VIP...................... Q2
Vista V-80 5.25in. SD...................... R8
Vista V2005.25in.DD P6
Wangwriter.....................................SE
WORDPLEXSZ
XEROX 820, 5.25 in........................S6
XEROX 820, 860 8 in......................A1
ZEDA580SH
Zenith Z89 + Magnolia CP/M-80...P7
Zenith Z89 + Zenith CP/M-80........ P7
Zenith DD/SS..................................SK
Zenith DD/DS.................................. SJ

Program namesand computer names
are generally trademarks or service
marks of the author or manufacturing
company.
All Lifeboat 8-bit software requires
SB-80 (or other CP/M-80 compatible
disk operating system) unless other-
wise stated.
All products are subject to terms and
conditions of sale.

Send for full Lifeboat Associates Software Desk Reference with descriptions of all the
above plus a whole lot more.

LIFEBOAT HAS THE ANSWER
with software, service and support from its offices in the U.S.A., U.K., Switzerland,

W. Germany, France, and Japan.
LIFEBOAT ASSOCIATES • 1651 Third Ave., N.Y. 10028 • (212) 860-0300

TWX: 710-581-2524 (LBSOFT NYK) • Telex: 640693 (LBSOFT NYK) Copyright © 1982 by Lifeboat Associates

43

Features

An Introduction to
Microcommunications

Davis Foulger
events would have been Science Fic-
tion. At best, it would be seen as being
a few years distant. At worst, it would
have been seen as fanciful. But that is
exactly what I did do today. In fact, I
follow a similar routine almost every
day, checking out the news and the mail
via my computer in less time than it
used to take just to read the newspaper.
Indeed, when I finish this article, I will
probably submit it to Lifelines/ The
Software Magazine the same way -
saving time, effort and (maybe) money
for both of us.

Why communicate?

The first thing I did when I woke up this
morning was turn on my computer. By
any but the most computer-freakish of
standards, that is a somewhat radical
action. My wife, for one, considers it
positively weird, although she is get-
ting used to it. In a few years, however,
the action may be about as common-
place as opening a newspaper over the
breakfast table. Indeed, that's exactly
what I was doing.

About two minutes after I turned my
IBM Personal Computer on, my micro-
communications software was loaded.
That done, I dialed up the local Telenet
access port and accessed Dialcom, a
Silver Spring, MD based electronic
mail and computer timesharing service
where I have an account. The "greet-
ing" I received on the service informed
me that two pieces of mail were waiting
for me in my electronic mailbox. Tuck-
ing that piece of information away for
future reference, I typed in UPI and
started a controlled journey through
the "newspaper's newspaper". As is my
habit, I approached the news selectively,
entering in a set of keywords that
would take me on a journey through
that subset of the day's news which
would be of greatest interest to me.

When I finished reading this "electronic
newspaper", I went to check the mail.
In reading the messages in my elec-
tronic mailbox I found that one was a
reply to a letter I had sent almost a
week ago. The other, however, was a
response to a message I sent last night. I
filed one message, replied to and de-
leted the other, and got off Dialcom.
The entire transaction had taken about
fifteen minutes. Dialcom returned me
to Telenet, from which I then accessed
the computers at the University of Wis-
consin, the site of a computer confer-
ence in which I have been participating.

The conference was actually four dis-
tinct sessions, each of which attracted
different people. One, entitled HCT*-
ICA, was a discussion of how the Hu-
man Communications Technology In-
terest Group of the International Com-

munications Association could use
computer conferencing to advantage.
A second, called PARTY*LINE, was an
open ended "conversation" among par-
ticipants in the conference. The topic
bound rules of HCT*ICA were no-
where to be found in PARTY*LINE,
and the topics ranged from requests for
(and offers of) information to discus-
sions of exotic, yet-to-be-built commu-
nications equipment like "Feel-A-
Phone" (a telephone with a bionic ex-
tension that allows people to shake
hands and do other "handiwork" long
distance). A third, which I had started
in the middle of the conference, was a
forum where graduate students were
discussing the electronic communica-
tion-related dissertations they were
writing. It was called DISS*DISC. Fi-
nally, a fourth session, called COMM*-
TECH, was a sort of open national
seminar about communication tech-
nologies.

As I was involved in all four confer-
ences, I accessed them all, one by one,
saving a disk-transcript of the messages
I received. The transcript would allow
me to come back later and read the
comments more carefully. Connect
time is too expensive to waste reading
messages selectively. As I read the new
messages in the sessions, I prepared re-
plies to various messages and when it
came my turn to write messages to the
sessions, I transmitted both the mes-
sages I had just written and some ex-
tended messages I had prepared the
night before. Twenty-five minutes af-
ter starting, I was finished. I had re-
ceived about fifty new messages and
sent five.

That night, after work, I received a call
from a friend. We talked for a while,
and then wanting to exchange some
files we had written to our computers,
switched over to our modems and
"talked" through our computers. It was
a local call and we let it go for most of
an hour. About that time my wife
called me for dinner.

A few years ago, that sequence of

Few people would buy a microcompu-
ter as a substitute for the telephone or
newspaper. Truly the greatest value of
micros is their capacity to accomplish a
range of useful tasks without a com-
munications link to other computers.
Word processing, spreadsheet math-
ematics and other applications soft-
ware more than pay back the cost of
the computer for most users. Still, one
out of every ten microcomputer
owners have bought communications
capabilities for their microcomputers.
And even with the microcomputer
market growing rapidly enough to
guarantee rapid growth in the micro-
communications market without any
increase in the percentage of micro-
computers that also microcommuni-
cate, that percentage is increasing and
is likely to reach 25% or more by the
end of this decade.

Although there are variations in the
ways that people microcommunicate
and the applications they use the mi-
crocommunications medium for, there
are basically two reasons for micro-
communicating:

(1) Communication with other
microcomputer users

(2) Access to remote timesharing
computers

This article will explore both of these
general applications of microcommu-
nications, looking at the applications

44 Lifelines/The Software Magazine, June 1982

that different users put the medium to,
the motivations behind those uses, and
the costs involved, particularly when
compared to comparable communica-
tions systems. An article in a future is-
sue of Lifelines/ The Software Maga-
zine will look at the necessary and ideal
characteristics of microcommunica-
tions software.

Communications With
Other Users

but even among eight inch machines
that standard is not universal. In fact,
buying the software/ firmware that
allows some eight inch machines to
read IBM-format diskettes can cost
more than microcommunications does.

The number of bytes stored on a soft
sectored, single sided, double density
disk can fall anywhere along a contin-
uum that ranges from the 160 Kbytes
stored on an IBM Personal Computer
PC-DOS format diskette to the nearly
700K bytes stored on some S-100 bus
machines. In the five inch world, there
simply aren't any standards, although
some are beginning to talk about using
the IBM Personal Computer's PC-DOS
disk format as a de facto standard in the
world of double density storage. A sin-
gle set of universally applied standards
for exchangeable storage media is not,
moreover, likely to appear. There are
simply too many highly successful
machines operating in too many disk
formats to allow any easy movement
toward standards.

Microcommunications offers what is
probably the single most important
way out of this disk incompatibility
problem. Users who are equipped for
microcommunications simply dial each
other up on the telephone and "talk"
through their computers, exchanging
files, including programs, in the pro-
cess. The "equipment" needed to make
this kind of program exchange over the
telephone is expensive compared with
the cost of the $5.00 disk it replaces, but
costs don't count when disks cannot be
exchanged. There are, moreover, other
advantages to exchanging files this
way.

Speeding The Software Development
Process: Key among these advan-
tages is the speed with which software
can be exchanged. There are basically
three ways in which users can exchange
software. They can mail it to each
other, exchange disks in person, or mi-
crocommunicate it. No matter how
close two people live, the mail will take
at least 24 hours. More often than not,
it will take longer than a week. Ex-
change in person requires that people
coordinate their schedules so that they
can be in the same place at the same
time. That coordination may not be
difficult, but it does slow the exchange
and will often require one or both of the
participants to go somewhat out of
their way.

By contrast, microcommunicating the
program doesn't even require the soft-
ware developer to leave his or her com-
puter. This can be particularly valuable
in the program development process,
as it allows the developer to quickly try
out new features on other users. All
you need is another user with micro-
communications capabilities and a ma-
chine that can run the software. If,
moreover, the other user has an operat-
ing auto-answer modem and host com-
munications software, they don't even
need to be at their computer to receive
your software. Indeed, the ease and
speed with which users can microcom-
municate software is such that the mi-
crocommunication of software would
probably be widespread even if the
problem of disk incompatibility were
solved.

A New Mode of
Conversation

A friend of mine has wisely noted that
the first uses of microcommunications
are not likely to be the ultimate ones. In
the long term, microcommunications is
likely to develop into a dominant mode
of interpersonal communication. In
business settings, this will happen
within the next few years, because
some of the advantages that I'll discuss
can have a positive impact on both pro-
ductivity and the quality of work. But
as voice recognition moves from prom-
ise to reality, microcommunications
may actually supersede the telephone
as the dominant mode of mediated in-
terpersonal communication in the U.S.
Although some users already use a
mode of interpersonal communication,
the single largest application to which
users currently seem to put microcom-
munications is program exchange. This
application is a very practical one, as it
solves one of the larger problems that
face microcomputers today.

Overcoming Disc Incompatibility:
Users who wish to exchange the pro-
grams they write between different
machines are inevitably faced with the
problem of disk incompatibility - the
fact that very few microcomputers are
capable of reading disks written for
other microcomputers. Even when
programs share common operating
systems and systems use the same size
and type of disk, system software will
often prevent disk exchange. Users
who wish to exchange programs be-
tween different machines not only face
the differences between five and eight
inch disks, hard sector and soft sector
disks, single density and double density
disks, and single sided and double sided
disks, but the less tangible variations in
the way information is packed on the
disk.

IBM's de facto standard for eight inch
disks eliminates disk compatibility
problems for many eight inch machines,

This ease and speed also makes micro-
communications a highly enjoyable
way of conversing with someone. In-
deed, microcommunications repre-
sents the bare bones of a mode of con-
versation that may well revolutionize
the way people talk to each other
within twenty or thirty years. Even
now, the microcomputer has some ma-
jor advantages over the telephone as a
conversational medium.

A first advantage has already been im-
plicit to the discussion of program ex-
change. Microcommunicators can save
files that are sent to them by other mi-
crocommunicators. While these files
are often programs, they can be any-
thing, including the text of this article.
In truth, literally anything that can be
stored in a computer can be microcom-
municated to another computer and
saved there.

Once saved, moreover, it exists in an
electronic form which can not only be
read at any time, but which can be eas-
ily edited and revised by the recipient.
This is particularly valuable if the peo-
ple who are communicating are work-
ing together over long distances (and
even short distances) on projects which
require a document as the final pro-
duct. People who are, for instance, col-
laborating on the writing of an article,
can rapidly shuttle easily revised elec-
tronic drafts of documents to one

(continued next page)
45

Lifelines/The Software Magazine, Volume III, Number 1

another; this speeds up the writing, and
ultimately improves the quality, of the
final product.

Saving An Electronic Transcript: This
ability to save information that is mi-
crocommunicated is not, moreover,
limited to saving the files that have
been prepared and sent by the other
party. The microcommunicator can
easily save an electronic transcript of
his or her conversations with others
through the computer.

The problems of keeping a record of
what has been said is one of the biggest
problems with conversation on the
telephone. After talking with someone
for twenty minutes, it is not always
easy to reconstruct what has been said.
You often cannot remember what you
said, what the other person said, or
what it was that took the conversation
down a given path in the first place.
The tape recorder does, of course, pro-
vide a means of keeping a record of a
telephone conversation, but it is not a
convenient or easy-to-transcribe
means. This problem is solved in com-
puter communication because you can
easily keep a transcript of the conversa-
tion by simply saving what is being said
to disk. It is easy to do, does not
generally slow down the conversation,
and is saved in an electronic form that
is easy to read, edit, and apply to other
purposes.

Sexual Microcommunications? An-
other advantage of the medium is its
potential for simultaneity. If your mi-
crocommunications software is written
to allow it, communication can become
literally simultaneous, with one person
responding to the other's comments
even as the other person is writing
them. This is made possible by the na-
ture of the microcommunications car-
rier signals and the flexibility with
which the microcomputer can be pro-
grammed to transmit and display infor-
mation. This kind of communication
capability is close to impossible in any
other communications media except
face to face interaction. Even there, the
only conditions under which a compar-
able level of simultaneity can be
reached is in the sex act. This kind of
feature is not universally applied in ex-
isting communications software pack-
ages, but it can be. It is, plain and sim-
ply, a function of software.

given period of time when talking on
the telephone and when microcommu-
nicating. The rate at which most people
speak generally ranges between 120
and 160 words per minute. It is difficult
for most people to talk faster than that
and still be understood. Contrast with
that a typical microcommunications
system equipped with a 300 baud mo-
dem (baud is the communications
word for bit - 300 baud means 300 bits
per second or roughly 37.5 characters
per minute). The 300 baud microcom-
munications system is capable of trans-
mitting and receiving information at a
rate of about 350 words per minute -
two to three times the speed of typical
voice communications. At 1200 baud,
another common communications
speed, that rate quadruples, and voice
communication pales by comparison.

These speed increments can be deceiv-
ing, as most people cannot type at
speeds that even approach the 120
words a minute at which almost any-
one can talk. More typical typing
speeds run at about twenty to forty
words per minute. Microcommunica-
tions can still translate substantial sav-
ings on communication costs, though.
If messages are prepare J off-line before
the call is made, typing rates become
unimportant. The communication can
be sent as a file at 350 words a minute or
more, cutting communication costs by
at least 50% and often considerably
more. If the message is reasonably
short, moreover, it can sometimes be
transmitted for less than the cost of a
first class letter. A late night call be-
tween New York and Los Angeles on
ITT's Citi-Call long distance telephone
network costs well under 10 cents a
minute. Microcommunicators using
such a connection at 300 baud might
easily send a two- to four-page letter
for less than twenty cents.

Access To Remote
Timesharing Computers

Many microcommunicators enter the
microcomputer world after years of us-
ing mainframes and minicomputers in
school and business. Thus, although
the range of applications and the poten-
tial advantages of microcommunicat-
ing directly with others account for a
large portion of the users who currently
microcommunicate, there are many
microcommunicators who never en-
gage in this kind of direct user-to-user

The World Of
Microcommunications
Games

One area in which users will appreciate
this capacity for simultaneity is in the
playing of multi-player computer
games. The kinds of games which
would be suited to microcommunica-
tions are not yet being marketed, but
there are several potential characteris-
tics of such games that could make
them highly popular. First, the machine
reverts to a battleground for a contest
in which there can be clearcut winners
and losers, where strategy becomes
more flexible. The two major problems
with most person versus machine com-
puter games are the less-than-clear def-
inition of what constitutes winning and
the singularity of the strategy which ul-
timately beats any given game. Games
with this characteristic can already be
found in play on mainframe computers
at schools across the country, but are
uncommon on microcomputers.

A second characteristic could prove
more interesting, however, as each
player, with a microcomputer at his or
her disposal, can potentially use that
microcomputer as an assistant. In play-
ing chess, for instance, the players
could ask their computers for advice on
moves. In playing a super star game,
the computer could be programmed to
calculate vectors, keep track of friendly
and enemy ships, give warnings of im-
pending problems and opportunities,
and even take care of minor opera-
tional decisions. In this kind of game,
programming skill could quickly be-
come as important as reflexes; and
strategy and planning would become
an even more important component of
computer gamesmanship.

Cutting Communications
Costs

If all this sounds expensive, think
again. Several factors work to keep the
cost of microcommunications low. Un-
der many circumstances, a conversa-
tion via a microcomputer is less expen-
sive than a telephone call. Under some
special conditions, it can even be
cheaper than a first class letter.

Consider, for instance, the amount of
information that can be exchanged in a

Lifelines/The Software Magazine, June 1982
46

microcomputer market. Given this
backdrop, it should come as no sur-
prise that one of the biggest reasons for
using remote timesharing services is the
extended computing resources they of-
fer the microcommunicator.

A wide range of applications software
is available to users through commer-
cial timesharing services, and although
the options are more restricted on con-
sumer timesharing services, the micro-
communicator will find a wide range of
software options available. These op-
tions include advanced statistical pack-
ages, portfolio managers, financial
planning software, mineral exploration
and management programs, and engi-
neering and research and development
software.

Another resource that will be of inter-
est to some microcommunicators is the
games programs that can be accessed
on the consumer timesharing services.
Although many of the games that are
available on these services can be im-
plemented on microcomputers, a
whole new class of multi-user games
can be expected to be implemented in
the future. In these games, the micro-
communicator will be able to program
his or her microcomputer as an elec-
tronic assistant turning games of skill
and rapid reaction into games of strat-
egy. Users are not limited to pre-pack-
aged software, moreover, and may find
value in implementing their own ex-
tended programs on the remote time-
sharing system.

Electronic Publishing: One of the
most promising new services that time-
sharing microcommunications intro-
duces is the publication of newspapers,
magazines, newsletters, articles, and
even whole books without paper. To-
day that promise is reality. Microcom-
municators are not only capable of
reading the United Press International
wire service, as I did this morning, but
The New York Times, The Wall Street
Journal, The Washington Post, The
San Francisco Chronicle and a number
of other newspapers and regular publi-
cations. These well-known publica-
tions are just the tip of the electronic
publication iceberg, however; micro-
communicators will find electronic
publications devoted to a wide range of
topics. While many are electronic ver-
sions of "hard copy" publications,
some can be found nowhere else.

(continued next page)

the U.S. These services, which are
often available to users at low or no
cost, often consist of little more than a
modem, a microcomputer and some
bulletin board software. As many of
these systems can only communicate
with one user at a time, they are not
true timesharing systems, but many of
the applications and services that are
available to users of commercial and
consumer timesharing services can be
found on these electronic bulletin
boards.

It should be noted that there is no
special reason why a user needs a mi-
crocomputer to use these services.
Most are geared to terminal users. The
microcomputer will frequently lower
the cost of such access, however, by al-
lowing the user to do a large percentage
of his or her message preparation off-
line, and by allowing the user to store
the information received from the time-
sharing computer for later examina-
tion. A microcomputer will also allow
the user to change the microcommuni-
cations software employed, to suit the
particular application and the desires
of the people involved.

Applications Of
Timesharing

communication. These users, for the
most part, use their microcomputers to
access remote timesharing computers.
This second use of microcommunica-
tions is becoming increasingly impor-
tant as the range and quality of infor-
mation, communication and comput-
ing services available on these central-
ized services increase and improve.

The world of timesharing and quasi-
timesharing is a cluttered one. Even in
an article which restricted itself to ex-
ploring only commercial services, the
number of companies that offer time-
sharing services to users would be too
long to give many adequate mention.
In general, the range of services that of-
fer timesharing and quasi-timesharing
services can be divided into four broad
classes. First among these are commer-
cial services which generally restrict
their marketing efforts to business,
government and academic audiences.
Few microcommunicators will find
themselves regularly accessing these
services except as a function of their
work. They are generally too expensive
for individual users.

Consumer Timesharing Services: In-
dividual users are generally targeted by
the consumer timesharing services.
These services, which currently include
The Source, CompuServe and Dow
Jones, offer users a more limited range
of services than are available on indus-
try-oriented timesharing services, but
offer those services at realistic prices.

Individual users may also have access
to timesharing computers at school and
at work. Most universities have some
sort of timesharing computer system
that is available for use by students. Al-
though students will often face restric-
tions on the circumstances under which
they can use university equipment, the
option is often a quick means to low-
cost timesharing access for the single
user group that can probably least af-
ford commercial services. Access to
business computers can be much more
restrictive, but many companies en-
courage professionals and executives
who use company computer resources
at work to maintain such access at
home.

Quasi-Timesharing Via Bulletin
Boards: A final source of what might
be called 'quasi-timesharing services"
can be found in the hundreds of elec-
tronic bulletin boards that already dot

The wide range of available timeshar-
ing services reflects, in part, the diver-
sity of applications offered. Among the
user applications obtainable on various
remote computer timesharing services
are electronic communications, elec-
tronic publishing, information re-
trieval and extended computing re-
sources. Not all of these services are
offered by all timesharing computers.
Indeed, many commercial timesharing
companies have concentrated their ef-
forts on offering only a limited subset
of these services. All, however, are
offered by the major consumer time-
sharing services.

Extended Computing Resources: A
friend of mine once commented that a
microcomputer can do almost any-
thing, if you give it long enough. Still,
the speed and memory capacities of the
typical 64K microcomputer limit its ap-
plications. Many software packages
simply cannot be fully implemented on
the typical microcomputer and many
software distributors are reluctant to
even try adapting their software to the

Lifelines/The Software Magazine, Volume III, Number 1 47

Electronic publishing remains highly
experimental. Good solutions to the
problems of transmitting graphics, dis-
playing advertising, getting people to
the information they want and distrib-
uting revenues and costs are far from
being found. But powerful incentives
to find those solutions are the advan-
tages of electronic publishing in terms
of saving natural resources, increasing
the responsiveness and accessibility of
publications and making it possible to
publish a far wider range of informa-
tion than has ever before been possible.
Even at this experimental stage, how-
ever, many microcommunicators will
find the already-available electronic
publications a convenient alternative
to hard copy.

Information Retrieval: Even those
who aren't interested in reading publi-
cations on-line will find timesharing a
useful adjunct to their reading if they
spend much time looking for specific
kinds of information. Just about any
index of publications that can be found
in a library can be accessed through a
computer - and with considerably
greater facility. A search that might
take several hours of ploughing
through twenty or thirty different li-
brary volumes can be completed in a
few minutes through a database time-
sharing service like Lockheed Dialog
(currently alone in offering their ser-
vices on terms that most microcommu-
nicators can afford). The service is still
expensive, running $60 or more an
hour, and will not be required by every
microcommunicator, but for those who
do a great deal of library research, it
can be invaluable.

Bibliographic databases are not the on-
ly kind of information retrieval ser-
vices available on timesharing services,
however, and other users will find
other kinds of timesharing database
services. These services include chemi-
cal and econometric data, the full text
of newspapers going back over periods
of six months or more, and software
that permits users to build their own
timeshared databases.

Electronic Communications: How-
ever useful the above applications of
remote timeshared microcommunica-
tions may be, the most useful applica-
tions of remote timesharing may be in
the communication itself. Indeed, mi-
crocommunicators will find that time-
sharing offers both greater flexibility in

communication and a way to further
shave the costs of long distance micro-
communications. There are already
four distinct modes of microcommuni-
cation available through various time-
sharing services. These modes - com-
puter conversation, electronic mail-
boxes, computer conferencing and
electronic bulletin boards - offer users
the opportunity to tailor the communi-
cation resources they utilize to their
particular needs.

Electronic mailboxes are exactly what
they purport to be, a place to put letters
that people send to each other electron-
ically. The biggest value of the elec-
tronic mailbox is that it is, in fact, a
mailbox. To get the message, you don't
have to be there when the message is
left. Remembering the message is the
job of the timesharing service. The fact
that the mailbox is electronic leads to
other values, moreover. Electronic mail
can be opened from anywhere you can
interface a terminal or microcomputer
to a telephone. My mailbox on Dial-
com is just as accessible to me from
Boston, New Orleans or Los Angeles as
it is from my home in Connecticut.
This feature is a tremendously conve-
nient one, especially for people who
travel frequently on business. A secre-
tary or associate can easily leave a mes-
sage in an electronic mailbox with con-
fidence that the message will get where
it is supposed to go quickly.

This speed is another value of the elec-
tronic mailbox. Remember that one of
the two messages I found in my elec-
tronic mailbox this morning was a re-
sponse to a letter I sent last night. As
my mother puts it: "Your grandchil-
dren can open their Christmas presents
in the morning and you can read their
Thank you's in the afternoon". This
savings in time can more than pay back
the cost of an electronic mailbox all by
itself, even if electronic mail were really
more expensive than regular mail.

Computer conferencing and time-
shared electronic bulletin boards can
both be thought of as public variations
on the electronic mailbox. Both store
the comments of many people in a sin-
gle file that can be read by many differ-
ent people. The intent and organization
of the two is quite different, however,
and they are appropriate for rather dif-
ferent sets of tasks. The computer con-
ference is organized sequentially as a
kind of asynchronous small group

meeting. Participants enter and leave
the meeting pretty much as they please,
with the computer keeping track of
how much of the meeting they have
read and any comments they add to the
meeting. Computer conferences can be
just about anything you might want
them to be. They can be tightly struc-
tured and focused on a specific issue or
left open to a general discussion. The
conference sessions I participated in
this morning included conferences that
operated at both of these extremes and
at points between.

The computer conference is a valuable
alternative to the conventional busi-
ness meeting, especially when the speed
with which the group must reach a de-
cision is less important than the quality
of the decision. Computer conferences
are, understandably, slow. Participants
move in and out sporadically and it
may take a week to generate the
amount of conversation that might be
generated in an hour of face-to-face dis-
cussion. It is not uncommon, more-
over, to find few times when two group
members are actually accessing the
conference at the same time. But that
slowness has value. Participants have
time to digest one another's comments
and are not pushed into making state-
ments in haste. Ideas tend to become
more important than emotion and it
becomes difficult for group members to
exert control over the meeting. As a
friend has commented, "it is difficult to
have an argument in a computer con-
ference".

By contrast, electronic bulletin boards
tend to be topically organized, with
users choosing the things they want to
read and write about by selecting op-
tions from menus of alternatives. More
will be said about bulletin boards be-
low, as they are commonly imple-
mented as quasi-timesharing systems.

Computer conversation is really not
appreciably different than direct user-
to-user microcommunications, and un-
less portions of the conversation are
written before the user accesses the
timesharing service, it can be the most
expensive of the microcommunication
options that are available through a
time-sharing service. It can, however,
be considerably cheaper than a direct
microcomputer-to-microcomputer co
nection. A one-hour telephone micro-
communications connection between
New York and Los Angeles via ATT,

48 Lifelines/The Software Magazine, June 1982

a lot of good reasons to give it micro-
communications capability. The hob-
byist benefits from the ability to quick-
ly and easily exchange the software
written with friends. The computer
games player gains access to a way of
playing new kinds of interactive
games. The software developer bene-
fits from the ability to try out innova-
tions in software on test audiences,
without having to go to the trouble of
meeting that person and without the
delay of shipping software through the
mail. From the convenience of home,
professionals gain access to the compu-
terized files and databases they keep at
work. Executives and managers can
stay on top of important correspon-
dence from wherever they find a phone
and terminal.

Microcommunications has something
to offer just about anybody who uses a
microcomputer. And because it doesn't
cost much compared with some of the
alternative modes of communication
currently available, it really has some-
thing to offer just about anybody who
does much communicating over the
telephone, or who finds that the speed
and reliability of first class mail leaves
something to be desired. Properly
used, microcommunications can be
faster, less expensive and more conve-
nient than a telephone call; in some cir-
cumstances, microcommunications
can even beat a first class letter for cost
and reliability. Other characteristics of
microcommunications can make the
medium both more convenient and
more forgiving than other media. Cost
effective microcommunications de-
pends on the use of good communica-
tions software. The necessary and ideal
characteristics of such software will be
examined in a coming issue of Life-
lines/ The Software Magazine.

even during the lowest rate periods,
will cost over $13.00. That same con-
nection can be made for less than half
that amount (almost two-thirds less)
using CompuServe or The Source dur-
ing those same periods.

These savings multiply the speed-re-
lated savings on connect costs that mi-
crocommunicators can already gain
over a voice telephone conversation. If
messages are prepared off-line and
transmitted at night using a 300 baud
modem and a timesharing service like
The Source or CompuServe, $13.00
worth of late night telephone conversa-
tion can be microcommunicated for a
price that will range somewhere be-
tween $1.60 and $3.00, depending on
how fast you talk and the service you
use.

Quasi-Timesharing
Electronic Bulletin Boards

Community electronic bulletin boards
offer microcommunicators another
class of service with many of the same
options available on consumer time-
sharing services. As these services are
often implemented on microcompu-
ters, a microcommunicator may have
to make use of several bulletin boards
to match the range of services offered
by the most limited timesharing ser-
vice. Still, they offer the user many
timesharing service options and the
availability of these services at low or
no cost makes them an important op-
tion for cash-strapped microcommuni-
cators.

Operated by local computer clubs,
businesses and other organizations that
want to establish a central source of in-
formation exchange, these local elec-
tronic bulletin boards are established
for a variety of purposes. Computer
clubs start bulletin boards to facilitate
program exchange, prepare and dis-
tribute newsletters, and perform other
communications functions. Businesses
start the bulletin boards as a way of ad-
vertising themselves and their prod-
ucts, and as a way of taking orders
from customers. Other organizations
provide a wide range of information
through bulletin boards.

Although these bulletin boards are of-
ten available to microcommunicators
without cost, it should be noted that

"free" is not necessarily cheap. Use of a
community electronic bulletin board
will still require the microcommuni-
cator to pay telephone charges that can
be more expensive than consumer time-
sharing costs unless the call is a truly
local one. A one hour late night phone
call to a person just two towns removed
from the one where I live (about ten
miles away) costs me $3.66, most of the
cost of access to The Source or Compu-
Serve during that same period. Calls to
towns that are further away quickly
escalate in cost to the point where it is
cheaper to communicate via the Source
or CompuServe than it is to make a
phone call. Of course, these economics
change if you must access the consumer
databases via Tymnet or Telenet (if the
access number for Tymnet, Telenet or
the consumer database is not a local
call for you). But the point remains -
"free" microcomputer-based local elec-
tronic bulletin boards do not necessar-
ily save money for users.

Listings of various electronic bulletin
boards are available from a number of
sources. One source of this information
is an electronic bulletin board operated
by Novation, the modem manufacturer.
Novation lists electronic bulletin
boards under item 18 on their bulletin
boards menu. It can be accessed by
dialing (213) 881-6880 with a 300 baud
modem and using the password CAT.
Another information source is AMRAD
(524 Springdale Avenue, McLean, VA
22101), which will mail you a hard copy
directory of community electronic bul-
letin boards for $1.00.

In Microconclusion

Even if you bought (or are considering
buying) your microcomputer primarily
as a standalone work station, there are

Lifelines/The Software Magazine, Volume III, Number 1
49

Modifying Control-U In MBASIC
Bill Norris

A frequently recurring MBASIC question is "How can I keep
my program from being aborted when a TC is typed on the
console?" Although this problem may be solved by several
different methods, each suffers from one or more drawbacks.
The best solution would be for the interpreter to have a com-
mand which would redefine or disable TC checking. (If you
wait for this though, you'll probably see complex variables
implemented in FORTRAN first.) Another method would be
to modify the system so that a TC is translated or ignored.
This can be done by changing the BIOS or by using a key-
board redefinition program. This won't help someone using
your program on another system, and what do you now do
when a TC is really needed? The method described here
should work with any version of MBASIC, including the com-
piler, although the variable names would have to be shortened
to be compatible with pre-5.0 interpreters. It has one limita-
tion, however, in that the operating system under which it runs
must have implemented its BIOS as described in Figure A. That
is, the CONIN vector in the BIOS JUMP TABLE must point to
either a jump or a call instruction which branches to the real
console input routine. As most of the BIOS implementations
which I have seen utilize this method (including those done by
Lifeboat Associates), the program should work for most of
you. Line 45 will notify you if this is not the case.

The rest of the program works as follows:

1) Line 15 is a subroutine which receives a variable (TEMP)
containing an 8080 style two byte address. It produces as out-
put two variables (TEMPI & TEMP2), each containing the
value of one of the address bytes.

2) Line 35 is a DATA statement which contains two machine
language subroutines. The first one converts the TC, and the
second restores the system to it's original state. The routines
are listed in figure B.
3) Line 40 gets the value (CONIN) of the address pointed to
by the BIOS console input vector. This is the address that
MBASIC will call for console input. The jump table vector is
ignored by MBASIC after its initialization.

4) Line 45 does some testing to see if the routine won't work.
If the error message on this line doesn't get printed and yet the
program still doesn't work, then the first instruction in the
console input routine probably is a call to a console status
check. Fortunately, I haven't seen this yet.

5) Line 50 determines where the machine language routines
go. This can be changed to locate the routines anywhere in
memory. In the program example, 1024*64-256 puts the code
at FFOO hex. This is a safe location in my system as it lies
above the BIOS. For some combinations such as the Lifeboat
CP/M-80 for the TRS-80 model II, using CP/M-80 version
2.25 or later, this is not a safe location. Change the value of
ADDR to 8. This will put the code down in the 8080 restart
region which is unused by this CP/M-80. If neither of these
methods is appropriate for you, MOVCPM can be used the
generate a smaller system and will free up at least 1000 bytes
more than you really need.
6) Lines 55-85 put the code in place, link it with MBASIC and
finally, arranges for the undoing of these patches when the
program exits to the operating system.

Last note: This program replaces the TC character with a null,
which MBASIC ignores. If you want your program to look
for someone trying to type TC, just change DATA item num-
ber 8 (between 62 and 201) from 0 to some other value.

10 GOTO 35 ****** BASIC-80 routine to filter control-C ***
**

***** written March 15, 1982 - Bill Norris. *****

15 TEMP$=HEX$(TEMP) :
TEMP1=VAL("&H"+MID$(+TEMP$,3)) :

TEMP2=VAL("&H"+LEFT$(+TEMP$,2)):

RETURN
35 DATA 205,0,0,254,3,192,62,0,201,33,0,0,34,1,0,33,0,0,34

,0,0,195,0,0

40 TEMP=PEEK(2)*256+10 : CONIN=PEEK(TEMP)+PEEK(TEMP+1)*256

45 IF PEEK(CONIN)=195 OR PEEK(CONIN)=205 THEN GOTO 50

ELSE PRINT "Not safe to patch CONIN." : STOP

50 ADDR=1024!*64!-256! : CONIN.LOW=PEEK(CONIN+1) : CONIN.H
IGH=PEEK(C0NIN+2)

55 FOR 1=0 TO 23 : READ TEMP : POKE ADDR+I, TEMP : NEXT I

60 POKE ADDR+1, CONIN.LOW : POKE ADDR+2, CONIN.HIGH

65 POKE ADDR+16, CONIN.LOW : POKE ADDR+17, CONIN.HIGH

70 TEMP=CONIN+1 : GOSUB 15 : POKE ADDR+19, TEMPI : POKE AD
DR+20, TEMP2

75 TEMP=ADDR : GOSUB 15 : POKE CONIN+1, TEMPI : POKE CONIN
+2, TEMP2

80 POKE ADDR+10, PEEK(l) : POKE ADDR+11, PEEK(2)

85 TEMP=ADDR+9 : GOSUB 15 : POKE 1, TEMPI : POKE 2, TEMP2

90 NEW : REM Most of you will want to change NEW to a CHAI
N statement.

Code . . .CONIN2:

\BIOS

Jump CONIN2
(or call)CONIN:

Jump
TableJump CONIN

BDOS

CONIN
Vector

—Figure B

CALL C0NIN2 ; Get character

CPI 3 ; Check for *C

RNZ ; Return if not

MVI A,0 ; Else convert

RET ; and return

LXI H,WBOOT ; Restore the

SHLD 1 ; jump at 0

LXI H,C0NIN2; Undo the patch

SHLD CONIN+1 ; made in BIOS

JMP 0 ; Back to system

50 Lifelines/The Software Magazine, June 1982

Product Status
Reports

fifty constraints (maximize, minimize,
less than, more than, equal to). The al-
gorithm is written in machine language
to enhance speed; problems may be
printed, saved to disk. Data may be
altered; the solution includes price
ranges and shadow prices, along with
an appraisal of the maximum error the
solution may contain.
LP-Disk requires CP/M-80, 48K of
memory, one disk drive.

Mr. EDit
Micro Resources Corporation
This screen-oriented text editor is
designed for non-memory mapped
video display terminals; the author in-
tends it to be user-configurable for any
such terminal. Commands can be given
by text or command keys, and can be
English language or abbreviations. The
command keys remain active in com-
mand mode, and the cursor is main-
tained in the screen text at all times. A
single key can be defined as a series of
commands. Insert and overwrite are
supported, as are word wrap and para-
graph fill.

Such commands as search/replace,
print by line or area and other cursor
control and delete commands are in-
cluded. Horizontal windowing, indent
levels for structured programming, pri-
mary and secondary input and output,
command file handling, and iteration
macros are some of the features in-
cluded in this product.

Mr. EDit runs with 8080 or Z80 CPU's,
requires 24K or larger transient pro-
gram space (TPA), a terminal with a 12
by 64 display, and CP/M-80 or
MP/M-80 2.x.

SID-86
Digital Research

This general purpose debugger can be
used to debug software or configure
Digital Research 16-bit operating sys-
tems for 8086/8088 computers. It can
read compiled programs in any high or
low level language running under
CP/M-86, concurrent CP/M-86, or
MP/M-86. It has basically the same
features as the 8080-based SID. It sets
up to 16 permanent breakpoints with

associated pass counts, has high level
trace, symbolic assembly and disas-
sembly, and expression handling.

Torricelli Author
the Answer in Computers
This product is a tool primarily de-
signed for creating a Computer Aided
Instruction (CAI) course. A course
contains up to 250 "pages" or screens,
with quizzes, test answers, and closing
statistics (test results, pages completed)
where desired. A built-in full screen ed-
itor allows manipulation of data; the
course author may use WordStar-like
or WordMaster-like commands. The
answers to quiz questions and response
paths of the student can be determined
by the teacher. Blank pages may be in-
serted, pages deleted or copied.

This product requires CP/M 2.2x, an
8080 or Z80 CPU, total disk capacity of
32K, 48K RAM, a cursor addressable
terminal; if a printer is used, it must be
an 80-column one.

New Publications

New

Products
The products described below are
available from their authors, computer
stores, software distributors and pub-
lishers.

BACKUP
TRI-L Data Systems
This program is designed for users of
CP/M-80 2.x who have large-capacity
winchester disk drives. This utility per-
mits data to be copied from winchester
drives onto more than one smaller ca-
pacity floppy disk. BACKUP replaces a
second hard disk drive, or tape drives
for archiving disk data.

The FinalWord
Mark of the Unicorn
This word processor, written in C, in-
corporates such features as multiple
line spacing, automatic word wrap,
automatic insert mode, global search
and replace, justification, super- and
subscripts, multiple fonts, underscore,
move and delete blocks; cursor posi-
tions by word, sentence, line, para-
graphs, beginning and end of text are
supported.
In addition, The FinalWord allows the
user to set up headings and a table of
contents automatically, to footnote,
and to create index entries. These func-
tions are implemented when the user
embeds certain codes in the text. Two
files can appear on screen at once,
while one is edited, and one file can be
printed while another is edited. True
proportional spacing is supported.
User-defined commands can be cre-
ated, and the product can recover de-
leted text.
The FinalWord requires CP/M-80,
CP/M-86, or IBM PC DOS, along with
a 56K system.

LP Disk
Agricultural Software Consultants, Inc.
This linear programming problem
solver handles up to fifty variables and

Periodical Guide For Computerists
The 1980-1981 version of this index has
been released, listing articles which
have appeared in Lifelines/ The Soft-
ware Magazine, BYTE, Dr. Dobbs,
Kilobaud, Microsystems, and twenty
other publications. They are classified
in broad subject headings which are
further divided into more specific sub-
ject categories (i.e., Languages,
Pascal). The author, article name,
magazine, issue and page are listed and
the article is classified according to
whether it's a book review, editorial,
review, etc.
Practical Pascal Programs
By Greg Davidson and Lon Poole
This book contains a collection of Pas-
cal programs classified under the cate-
gories of finance, management deci-
sion, statistics, science, and math. In-
structions are given to allow users to
modify the programs. Sample runs and
practice problems are also included.

Software Vendor Directory
Micro-Software Services, Inc.
This directory lists more than 1800
software vendors, 123 hardware ven-

(continued next page)
Lifelines/The Software Magazine, Volume III, Number 1

dors, and twenty-two operating sys-
tems. 12,300 are categorized and in-
dexed. The directory is available in
book form or on disk, running under
CP/M-80 with a database utility for
finding information.

New

sults from values in columns or
rows other than the one in
which the result is to be placed.
For example, Cash Collection
might be set to 60% of prior
months plus 40% of current
month's sales. The :FOR state-
ment may be used to tell
PLAN80 to ignore certain col-
umns or rows.

PANEL Version 3.0

The new system offers a number of
improvements over version 2.2, of
which the following is a summary:

1- Wide-screen terminals are sup-
ported.

2-The terminal definition file
now includes specifications for
up to 16 highlighting types,
and also caters for additional
cursor addressing methods (in-
cluding ANSI standard).

3- New field-definition attributes
are provided for right-justified,
numeric, and currency fields,
all handled automatically by
the library subroutines.

4-Subroutine names and calling
sequences have been simplified
and rationalized, but not to
such an extent that a few min-
utes work with a good text edi-
tor cannot change your exist-
ing programs.

5-Screen panel designs can now
be optionally loaded at run-
time, instead of being linked
into the program.

6-The system is supplied linked
and ready-to-run. The TAILOR
program now includes a menu
of predefined screens as well as
allowing even more flexible
screen and keyboard customis-
ing.

7-A multi-key record retrieval
program is supplied which sets
up an instant electronic filing
system' to match any screen
panel layout.

Plink-II
Version 1.14

This version implements several bug
fixes and some important enhance-
ments. Here are the problems which

have been remedied:

1- Plink-II no longer delivers a
false error #71 (program too
large) message when a pro-
gram using Microsoft BASIC
version 5.3 or above of more
than 180 Hex bytes in data area
is linked.

2- A false error #85 is no longer
generated when l inking a
Whitesmiths' C program.

3- A bug #190 was occasionally
occurring when a DEFINE
<symboll> = <symbol2>
command was used; this has
been fixed.

4- The last sector of an overlay an
even number of 128 byte sec-
tors in length now loads prop-
erly.

5- Plink-II no longer crashes
when it encounters Pascal /Z
programs with 8 character
identifiers.

The following are new features in-
cluded in this update.

1- Microsoft .REL files are now
linked more quickly.

2- Microsoft COBOL version 4.6
.REL files can now be linked by
P l ink - I I ; COBLOC and
COBLBX files must be on disk.

3- Microsoft M80 version 3.44
.REL files containing link-time
arithmetic expressions are now
handled by Plink-II; if they are
improperly formed an error
#99 will occur.

4- Files produced by the new
Whitesmiths' C compiler are
handled by Plink-II; the header
file is automatically included in
the program, and the library is
searched automatically. The
free memory area is set to the
proper address and the unini-
tialized data area appears as a
concatenated common block.

5- Three error numbers have been
added to signal a 4-byte integer,
a relative fixup having been
specified, and a loadable .0 file
given as input; old and new for-
mats are detected but cannot be
used in the same program.

6- Most BDS C programs can now
be linked as is. The run-time
support program C.CCC must
be on disk and is included in the
program.

7- Four new statements have been
added, specifically to identify

Versions
JANUS
Version 1.4.3

This new version includes some minor
bug corrections and adds Integer Expo-
nentiation to the features provided by
JANUS. A library of string handling
procedures has now also been ap-
pended, and the assembler has been
sped up.

Microstat
Version 2.08a

The MBASIC version now contains a
message warning the user not to mix
Single and Double precision numbers.

PLAN80
Version 2.3

This update contains several improve-
ments and bug fixes:

1- In an :OPTIONS section the
opt ions ZERO, DASH or
BLANK may be specified to
control the way in which zero
values are shown; if there is no
specification, dashes are used.

2- The "W", when used in the
DISPLAY mode, now properly
handles numbers in which the
total number of digits before
and after the decimal point is
greater than 7.

3- An IF statement following an
assignment to a cell or as the
first statement of a RULES sec-
tion no longer yields an Error
27.

4- The shift function has been ex-
panded to work with :FOR
statements. It is used in row or
column rules to compute re-

52 Lifelines/The Software Magazine, June 1982

when they do not include a plus sign in
the first column. It may not work cor-
rectly unless the file has been created
with T/MAKER, however.

The Print function has been modified
so that a few shortcuts may be taken for
underlining and boldface when a full
line is involved.

writer. The report writer allows up to
twenty columns, permits breaks, to-
tals, subtotals, and a floating dollar
sign. A column can come from file
data, be a constant or calculated re-
sults. The specifications for a report are
entered by filling in blanks on a format-
ted screen, and can be saved. In addi-
tion, this new version includes dimen-
sioned variables and color graphics.
All applications developed during ear-
lier versions will run with this one.

Phoenix Software Associates,
Microsoft, Whitesmiths' or
BDS C formats. If these state-
ments are used, and they have
no arguments, Plink-II does not
have to identify a file's format
itself.

8- Plink-II can output a linkable
Entry Point File containing
nothing but the absolute ad-
dresses of all global symbols
defined in the program being
linked. So no memory space is
reserved and the entry file may
be linked into a second pro-
gram to permit that program to
access symbols defined in the
first program. Entry Point Files
are useful when it becomes
necessary to create a program
whose executable code resides
in several different files which
are linked separately.

Quic-N-Easi
Version 1.4
This update offers several new features,
the most important being a report

T/MAKER-II
Version 2.5.3

This update features three enhance-
ments. A new function called DATA
can be used to label data files with a
drive name. A default data drive can be
specified. T/MAKER will continue to
look for all its program files on the cur-
rently logged drive, even if the data
statement is used with a different drive.

The Tally function now accepts an op-
tion called ALL which will cause it to
tally all non-blank lines in a file even

Notes On aBASE II, Version 2.3B
The Do case . . . enddo construct Michael Olfe
"Do case . . . enddo" operates exactlv as described in the manual, which mav be dis- _______________________________
appointing to those expecting a "case" construct a la Pascal. The first "endcase" en-
countered will pair with the first "do case" statement, whether or not there were in-
tervening "do case" statements. That is, this procedure does not nest.

With x < > '0' and x < > T the following sequence will always execute the inner
"DO CASE" statement, and never print "x = 2" or "x=3" (see Figure 1).
A note of warning on variable names
Strange and wonderful things can happen if you do not take care in naming data-
base fields which have boolean data types. Take the case of a database called
"database" with a field named "DONE", of type boolean, being opened with the
loop in Figure 2.
If the first record in the database has a true value in the field 'Done', the program
will terminate immediately with no prompting on the screen. The loop termination
condition will be true if either the memory variable called 'Done' or the database
fiejd called 'Done' is true.
Moral: reserve sets of variable names for control loops e.g. "loopdone", "loop-
donel".

Figure 1

do case
case x='0 '
? 'x=0'

case x= ’ l '
? ' x= l '

do case
case y='0 '
? ’Y=0*

otherwise
? 'y<>0'

endcase

case x='2 '
? 'x=2'

case x='3*
? 'x=3'

endcase

stor / / ° done Figure 2use database
do while .not. done

accept "Press Q to quit or D to do something" to c
i f 1 (c)=’Q'
stor t to done

else
< do something >

enddo

(continued next page)
Lifehnes/The Software Magazine, Volume III, Number 1 53

VERSION LIST May 7, 1982
The listed software is available from the authors, computer stores
distributors, and publishers. Except in the cases noted, all software
requires CP/M-80, SB-80, or compatible operating systems.

S Standard Version
P Processor
MR Memory Required

New Products and new versions are listed in boldface.
Product
ACCESS-80
Accounts Payable/Cybernetics
Accounts Payable/MC
Accounts Payable/ Structured Sys
Accounts Payable/Peachtree
Accounting Plus
Accounts Receivable/Cybernetics
Accounts Receivable/MC
Accounts Receivable/Peachtree
Accounts Receivable/ Structured Sys
Address Management System
ALGOL 60
ANALYST
APL/V80
Apartment Management (Cornwall)
ASCOM
ASCOM/86
ASM/XITAN
Automated Patient History
BASIC Compiler
BASIC-80 Interpreter
BASIC Utility Disk
BaZic II
Benchmark Word Processor
Benchmark Mail List
BOSS Financial Accounting System
BOSS Demo
BSTAM Communication System
BDS C Compiler
Whitesmiths' C Compiler
BSTMS
BUG/uBUG Debuggers
CBASIC2 Compiler
CBS Applications Builder
CIS COBOL Compiler
CIS COBOL Compact
FORMS 1 CIS COBOL Form Generator
FORMS 2 CIS COBOL Form Generator
Interface for Mits Q70 Printer
COBOL-80 Compiler
COBOL-80 PLUS M/SORT
CONDOR II
CREAM (Real Estate Acct'ng)
Crosstai k
DATASTAR Information Manager
Datebook-II
dBASE-II
dBASE-II Demo
Dental Management System 8000
Dental Management System 9000
DESPOOL Print Spooler
DISILOG Z80 Disassembler
DISTEL Z80/8080 Disassembler
Documate/Plus
Documate/Plus/Demo
EDIT Text Editor
EDIT-80 Text Editor
EM 80/86
FABS-I
FABS II
FILETRAN
FILETRAN

s
1.0

P
8080/Z80

MR
54K

1.0 8080/Z80 56K
1.3B 8080 52K
07-13-80 48K

8080/Z80 64K

1.0 8080/Z80 56K
07-13-80 8080 48K
1.4C 8080 56K
1.0 8080
4.8C 8080 24K
2.0 8080 52K
3.2 Z80 48K
1.0 Z80
2.01 8080
2.01 8086
3.11 Z80
1.2 8080 48K
5.3 8080 48K
5.21 8080 40K
2.0 8080 48K
03/03 Z-80
2.2
1.1
1.08 8080 48K
1.08 8080 48K
4.5 8080 32K
1.46 8080 32K
2.1 8080 60K
1.2 8080 24K
3.20 Z80 24K
2.08 8080 32K
1.33 8080 48K
4.4,1 8080 48K
3.46 8080 32K
1.06 8080
1.1,6a 8080

4.6 8080 48K
4.01 8080 48K
2.06 8080 48K
2.3 8080 64K
1.4 Z80
1.101 8080 48K
2.04 8080 48K
2.3B 8080 48K
2.3B 8080 48K
8.7A 8080 48K
2.0 8080 48K
2.1A 8080

4.0 Z80
4.0 8080/Z80
1.4 8080 36K
1.5 8080
2.06 Z80
2.02 8080
1.01 8086
2.7 8080 32K
4.15 8080/Z80 48K
1.20 32K
1.4 32K

1.5 32K
1.0 8080 56K
2.0 48K

Needs RM/COBOL. Runs w/CP/M-80, OASIS, UNIX
For CP/M-80 2.2
w/It Works run time pkg.
Needs BASIC-80 4.51

Needs RM/COBOL. Runs w/CP/M-80, OASIS, UNIX
CP/M-80 2.2
Needs BASIC-80 4.51
w/It Works run time pkg.
Requires 2 drives

Needs CBASIC2,QSORT/ULTRASORT
Needs APL terminal
Needs CBASIC2

Specify operating system: IBMPC/CPM-86/ MS-DOS

w/Vers. 4.51,5.21

Give Name & Model #'s of the video terminal
Give Name & Model #'s of the video terminal
Needs 2/3- drives w/min 200k each, & 132-col. printer

w/'C' book

w/CRUN(2,204P, & 238)
Needs no support language

CP/M-80 1.41 or 2.XX

CBASIC needed

Needs 80x24 terminal, N/A for CDOS, CP/M-80 1.4, MP/M-80

Needs CBASIC
Needs CBASIC

Zilog mnemonics
Intel mnemonics,TDL extensions

Specify operating system: IBM PC/CPM-86/MS-DOS

1-way TRS-80 Mod I,TRSDOS to Mod I CP/M-80
Needs TRSDOS. 2-way TRS-80 Mod I,TRSDOS
& Mod I CP/M-80
1-way TRS-80 Mod II,TRSDOS to Mod II CP/M-80
Runs under CP/M-80, CP/M-86 or IBM PC DOSFILETRAN

FinalWord
Financial Modeling System
FORTH (Timin)
FORTRAN-80 Compiler
FPL 56K Vers.
FPL 48K Vers.
General Ledger/ Cybernetics
General Ledger/MC
General Ledger/Peachtree
General Ledger/ Structured Sys
General Ledger II/CPaids
GLECTOR Accounting System
GLECTOR IV Accounting System
Graf Talk

3.5
3.44
2.6
2.6 oo

 o
o

oo
 o

o
o

o
o

o
00

 0
0

O
O

 o
o

o
o

o
o

Needs RM/COBOL. Runs w/CP/M-80, OASIS, UNIX
Needs CP/M-80 2.2 or MP/M-80
Needs BASIC-80 4.51
w/It Works Package
Needs BASIC-80 4.51
Use W/CBASIC2, SELECTOR III
Needs SELECTOR IV
Requires 180Kb /drive. Available for certain Terminals
Printers, & Plotters.

oo
 o

o
oo

 o
o

oo
 o

o
o

o
o

o
o

o1.0
07-13-80
1.4C

C
n

4
tn

C

n
O

'
O

o
ts

)
oo

 O
'

2.02
1.0
1.0

54 Lifelines/The Software Magazine, June 1982

VERSION LIST

Product s P MR
HDBS 1.05A + 52K
HOE 2.1 8080 48K
IBM/CPM 1.1 8080 CP/M 1.4 only!
Insurance Agency System 9000 1.08 8080 Needs CBASIC
Integrated Acctg Sys/Gen'l Ledger 8080 48K Needed for 3 pkgs, belowIntegrated Acctg Sys/Accts Pyble 8080 48K
Integrated Acctg Sys/Accts Rcvble 8080 48K
Integrated Acctg Sys/Payroll 8080 48K
Interchange Z80 32K
Inventory /MicroConsultants 5.3 8080/Z80 56K Needs CP/M-80 2.2
Inventory/Peachtree 07-13-80 8080 48K Needs BASIC-80 4.51Inventory/Structured Sys 1.0C 8080 52K w/It Works PackageJANUS 1.4.3 Z80/8080 Also runs w/8086Job Cost Control System/MC 1.0 8080/Z80 56K Requires CP/M-80 2.2JRT Pascal System 1.4 8080 56K
LETTERIGHT Text Editor 1.1B 8080 52K
LINKER Z80
LP-DISK 1.0 8080/Z80 48K Also for TRS-80 I/IIIMAC 2.0A 8080 20K
MACRO-80 Macro Assembler Package 3.43 8080/Z80
MAG/basel (LMS) 2.0.1 8080 56K Needs CBASIC, 2.06 or later & 180K/driveMAG/base2 (IMS) 2.0.1 8080 56K Needs CBASIC, 2.06 or later & 180K/driveMAG/base3 (ADS) 2.0.1 8080 56K Needs CBASIC, 2.06 or later & 180K/driveMagic Typewriter 3 Z80 48K
Magic Wand 1.11 8080 32K
MAG/sam3 4.2 8080 32K
MAG/sam4 1.1 8080 32K Needs CBASICMAGSORT-C 1.0 For CBASICMAGSORT-M 1.0 For MBASICMAGSORT-R 1.0 For Compilers — BASCOM, FORTRAN-80, PL/I-80MAILING ADDRESS Mail List System 07-13-80 8080 48K
Mail-Merge 3.0 8080
Master Tax 1.0-80 8080 48K
Matchmaker 8080 32K
MDBS 1.05A + 48K
MDBS-DRS 1.02 + 52K
MDBS-QRS 1.0 + 52K
MDBS-RTL 1.0 + 52K
MDBS-PKG + 52K w/all above MDBS productsMedical Management System 8000 8.7a 8080 Needs CBASICMedical Management System 9000 2.0 8080 Needs CBASICMicrocosm Z80 CP/M-80 2.X or MP/M-80Micro-SEED B.10G 8080
Microspell 4.3 8080 48K
Microspell Demo 1.0 8080 For Dealers OnlyMicrostat 2.08a 8080 48K Needs BASIC-80, 5.03 or laterMicrostat for Apple 2.0 Z-80
Mince 2.6 8080 48K
Mince Demo 2.6 8080 48K
Mini-Warehouse Mngmt. Sys. 5.5 8080 48K Needs CBASICMoney Maestro 8080/Z80 48K CP/M-80 1.4 or 2.2MP/M-I 1.0
MP/M-II 2.0 8080 48K Needs MP/M-80Mr. EDit 2.0 8080/Z80 24K Needs 24K TPA, 12 x 64 column terminalMSORT 1.01 8080 48KMu LISP-80/Mu STAR Compiler 2.12 8080
Mu SIMP / Mu MATH Package 2.12 8080 muMATH 80NAD Mail List System 3.0D 8080 48KNevada COBOL 2.1 8080 32KOrder Entry w/Inventory/Cybernetics Z80 Needs RM/COBOLPanel 3.0 44K Also for MP/M-80PAS-3 Medical 1.78 8080 56K Needs 132-col. printer & CBASICPAS-3 Dental 1.64 8080 56K Needs 132-col. printer & CBASICPASM Assembler 1.02 Z80
Pascal /M 4.02 8080 56K CP/M 2.4 onlyPASCAL/MT Compiler 3.2 8080 32K
PASCAL/MT+ w/SPP 5.5 8080 52K Needs 165K/ drivePASCAL/Z Compiler 4.0 Z80 56K
Payroll /Cybernetics, Inc. Z80 Needs RM/COBOLPayroll /Peachtree 07-13-81 8080 48K Needs BASIC-80 4.51Payroll/ Structured Sys 1.0E 8080 60K w/It Works run time pkg.PEARL SD 3.01 8080 56K W/CBASIC2, ULTRASORT IIPLAN80 Financial Package (Z80/8080) 2.3 8080/Z80 56K Specify Z80/8080PLAN80 Demo 1.2 8080
PL/I-80 1.3 8080 48K
PLINK I Linking Loader 3.28 Z80 24K
PLINK-II Linking Loader 1.14 Z80 48K
PMATE 3.02 8080 32K
PMATE-PC 1.04 8088 For the IBM PC
POSTMASTER Mail List System 3.5 8080 48K
Professional Time Acctg 3.11a 8080 48K Needs CBASIC2
Programmer's Apprentice 1.2 8080/Z80 56K Needs BASIC-80
Property Management Program (AMC) 4.2 Z80 48K Needs CBASIC 2.07+ , CP/M-80 2.0 +Property Management System 07-13-80 8080 Needs BASIC-80 4.51

(continued next page)
Lifelines/The Software Magazine, Volume III, Number 1 55

VERSION LIST
Product s P MR
Property Manager
PSORT

1.0
1.3

8080
8080

48K Needs CBASIC
N/A Durango

QSORT Sort Program 2.0 8080 48K
Quic-N-Easi 1.4 Z80 48K Also runs on TRS-80 Mod III
Real Estate Acquisition Programs 2.1 8080 56K Needs CBASIC
Remote 3.01 Z80
Residential Prop. Mngemt. Sys.
RM/COBOL Compiler

1.0 Z80 48K
w/Cybernetics CP/M-80 2, OASIS, UNIX

RAID 5.0.2 8080 28K
RAID w/FPP 5.0.2 8080 40K
RECLAIM Disk Verification Program 2.1 8080 16K
SBASIC 5.4a 8080 48K
Scribble 1.3 8080
SELECTOR-III-C2 Data Manager 3.24 8080 48K Needs CBASIC
SELECTOR-IV 2.17 8080 52K Needs CBASIC
SELECTOR-V 5.0 8080 48K
Shortax 1.2 Z80 48K TRSDOS,MDOS too, needs BASIC-80 5.0
SID Symbolic Debugger 1.4 8080 N/A-Superbr'n
Spellguard
Standard Tax

2.0 8080/Z80 32K Needs Word Processing Program
1.0 8080 48K Needs BASIC-80 4.51

STATPAK 1.2 8080 Needs BASIC-80 4.2 or above
STIFF UPPER LISP 2.8 8080 48K
STRING BIT FORTRAN Routines 1.02 8080
STRING /80 bit FORTRAN Routines 1.22 8080
STRING /80 bit Source 1.22 8080

Max. record = 4096 bytesSUPER SORT I Sort Package 1.5 8080
40KSELECT 8080/Z80

T/MAKER II 2.6 8080 48K Avail, for CDOS
T/MAKER II DEMO 2.4 8080 48K
TEX Text Formatter 2.1 8080 36K
TEXTWRITER-III 3.6 8080 32K
TIM-III 3.12 8080
TIM-III 3.11 8086 For the IBM PC
TINY C Interpreter 800102C 8080
TINY C-II Compiler 800201 8080

24x80 CRTTorricelli Author 1.04c 8080/Z80
TRS-80 Customization Disk 1.3C 8080
ULTRASORT II 4.1C 8080 48K
UT-86 1.00 8086 Specify operating system: IBM PC/CPM-86/MS-DOS
Lifeboat Unlock 1.3 8080 Use w/BASIC-80 5.2
VISAM 2.3p 8080 48K
Wiremaster 3.12 Z80 Needs 180K/ drive
Wordindex 3.0 8080 48K Needs WordStar
Wordmaster 1.07A 8080 40K
WordStar 3.0 8080 48K
WordStar w/MailMerge 3.0 8080 48K
WordStar Customization Notes 3.0 8080
XASM-05 Cross Assembler 1.05 8080 48K
XASM-09 Cross Assembler 1.07 8080 48K
XASM-51 Cross Assembler 1.09 8080 48K
XASM-F8 Cross Assembler 1.04 8080 48K
XASM-400 Cross Assembler 1.03 8080 48K
XASM-18 Cross Assembler 1.41 8080
XASM-48 Cross Assembler 1.62 8080
XASM-65 Cross Assembler 1.97 8080
XASM-68 Cross Assembler 2.00 8080
XYBASIC Extended Interpreter 2.11 8080
XYBASIC Extended Disk Interpreter 2.11 8080 With EDIT features
XYBASIC Extended Compiler 2.0 8080 Requires the XYBASIC w/EDIT features to create SOURCE
XYBASIC Extended Romable 2.1 8080
XYBASIC Integer Interpreter 1.7 8080
XYBASIC Integer Compiler 2.0 8080
XYBASIC Integer Romable 1.7 8080
ZAP-80 1.4 8080 Needs 50K/ drive
Z80 Development Package 3.5 Z80 N/ A-Magnolia,Superbr'n, mod .CP/M-80
ZDM/ZDMZ Debugger 1.2/2.0 Z80 For N'Star,Apple,IBM 8"
ZDT Z80 Debugger 1.41 Z80 N/A-Superbr'n,mod.CP/M-80
ZSID Z80 Debugger 1.4A Z80 N/A-Superbr'n, mod .CP/ M-80

+ These products are available in Z80 or 8080, in the following host language:
BASCOM, COBOL-80, FORTRAN-80, PASCAL/M, PASCAL/Z, CIS-
COBOL, CBASIC, PL/I-80, BASIC-80 4.51, and BASIC-80 5.xx.

Lifelines/The Software Magazine, June 198256

BOY, IS THIS
COSTING YOU.

records and entire databases
with a few keystrokes, with
accuracy to 10 places.

Change your data or your
entire database structure
without re-entering all
your data.

And after you’re finished,
you can protect all that
elegant code with our run-
time compiler.

Expand your clientbase
with dBASE II.

It’s really quite basic: time is
money.

And BASIC takes a lot more
time and costs a lot more
money than it should every
time you write a new business
software package.

Especially when you
could speed things up with
dBASE II.

dBASE II is a complete
applications
development package.

Users tell us they’ve cut the amount of code they
write by up to 80% with dBASE II.

Because dBASE II is the high performance relational
database management system for micros.

Database and file handling operations are done
automatically, so you don’t get involved with sets, lists,
pointers, or even opening and closing of files.

Instead, you write your code in concepts.
And solve your customers’ problems faster and for

a lot less than with BASIC (or FORTRAN, COBOL
or PL/I).

dBASE II uses English-like commands.
dBASE II uses a structured language to put you in

full control of your data handling operations.
It has screen handling facilities for setting up input

and output forms.
It has a built-in query facility, including multi-

key and sub-field searches, so you can DISPLAY
some or all of the data for any conditions you want
to apply.

You can UPDATE, MODIFY and REPLACE entire
databases or individual characters.

CREATE new databases in minutes, or JOIN data-
bases that already exist.

APPEND new data almost instantly, whether the
file has 10 records or tens of thousands.

SORT the data on as many keys as you want. Or
INDEX it instead, then FIND whatever you’re looking
for in seconds, even using floppies.

Organize months worth of data in minutes with the
built-in REPORT. Or control every row and column
on your CRT and your printer, to format input and
output exactly the way you want it.

You can do automatic calculations on fields,

Also available from Lifeboat Associates.

With dBASE II, you’ll write programs a lot
faster and a lot more efficiently. You’ll be able to
write more programs for more clients. Even take
on the smaller jobs that were out of the economic
question before. Those nice little foot-in-the-data-
base assignments that grow into bigger and better
bottom lines.

Your competitors know of this offer.
The price of dBASE II is $700 but you can try it

free for 30 days.
Call for our Dealer Plan and OEM run-time package

prices, then take us up on our money-back guarantee.
Send us your check and we’ll send you a copy of
dBASE II that you can exercise on your CP/M®
system any way you want for 30 days.

Then send dBASE II back and we’ll return all of your
money, no questions asked.

During that 30 days, you can find out exactly how
much dBASE II can save you,
and how much more it lets
you do.

But it’s only fair to warn
you: business programmers
don’t go back to BASIC’s.

Ashton-Tate, 9929 Jefferson,
Los Angeles, CA 90230.
(213) 204-5570.

®CP/M is a registered trademark of Digital Research.

Ashton-late
©Ashton-Tate 1981

S
econd C

lass P
ostage Paid

At N
ew

 Y
ork, N

.Y
.

LIFELIN
ES™

/The Softw
are M

agazine™
1651 Third A

venue, N
ew

 York, N
ew

 York 10028

